Answer
Verified
483k+ views
Hint: Use Bayes’ theorem and probability is the ratio of favorable number of outcomes to the total number of outcomes.
Given data
First bag contains 4 red and 4 black ball
Therefore total ball in first bag $ = 4 + 4 = 8$
Second ball contains 2 red and 6 black ball
Therefore total ball in second bag $ = 2 + 6 = 8$
Let ${x_1}$ and ${x_2}$ be the events of selecting first and second bag respectively.
Therefore probability of selecting one bag
$ \Rightarrow p\left( {{x_1}} \right) = \dfrac{{{\text{Favorable bag}}}}{{{\text{Total bag}}}} = \dfrac{1}{2} = p\left( {{x_2}} \right)$
Let ${A_1}$ be the event of getting a red ball.
Therefore probability of drawing a red ball from the first bag $ \Rightarrow p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right) = \dfrac{{{\text{Favorable balls}}}}{{{\text{Total balls}}}} = \dfrac{4}{8} = \dfrac{1}{2}$
Therefore probability of drawing a red ball from the Second bag $ \Rightarrow p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right) = \dfrac{{{\text{Favorable balls}}}}{{{\text{Total balls}}}} = \dfrac{2}{8} = \dfrac{1}{4}$
Therefore probability of drawing a ball from the first bag, given that the ball is red is given by$p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right)$.
Now we have to use the Bayes’ theorem to find out the total probability of drawing a ball from the first bag, given that the ball is red.
Bayes’ Theorem - In probability theory and statistics, Bayes' theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
Here,
${x_1},{x_2},{A_1}$ = events.
$p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right)$= Probability of ${x_1}$ given ${A_1}$is true.
$p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right)$ = Probability of ${A_1}$ given ${x_1}$ is true.
$p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right)$ = Probability of ${A_1}$ given ${x_2}$ is true.
$p\left( {{x_1}} \right)$, $p\left( {{x_2}} \right)$ = independent probabilities of ${x_1}$ and ${x_2}$.
So, by Bayes’ theorem we have
$ \Rightarrow p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right) = \dfrac{{p\left( {{x_1}} \right).p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right)}}{{p\left( {{x_1}} \right).p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right) + p\left( {{x_2}} \right).p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right)}}$
$ \Rightarrow p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right) = \dfrac{{\dfrac{1}{2}.\dfrac{1}{2}}}{{\dfrac{1}{2}.\dfrac{1}{2} + \dfrac{1}{2}.\dfrac{1}{4}}} = \dfrac{{\dfrac{1}{4}}}{{\dfrac{1}{4} + \dfrac{1}{8}}} = \dfrac{{\dfrac{1}{4}}}{{\dfrac{3}{8}}} = \dfrac{2}{3} = 0.66$
Therefore the required probability of drawing a ball from the first bag, given that the ball is red is 0.66.
Note: In such types of questions first find out the probability of selecting a bag then find out the probability of drawing a red ball from each bag then apply Bayes’ theorem we easily calculate the required probability of drawing a ball from the first bag, given that the ball is red.
Given data
First bag contains 4 red and 4 black ball
Therefore total ball in first bag $ = 4 + 4 = 8$
Second ball contains 2 red and 6 black ball
Therefore total ball in second bag $ = 2 + 6 = 8$
Let ${x_1}$ and ${x_2}$ be the events of selecting first and second bag respectively.
Therefore probability of selecting one bag
$ \Rightarrow p\left( {{x_1}} \right) = \dfrac{{{\text{Favorable bag}}}}{{{\text{Total bag}}}} = \dfrac{1}{2} = p\left( {{x_2}} \right)$
Let ${A_1}$ be the event of getting a red ball.
Therefore probability of drawing a red ball from the first bag $ \Rightarrow p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right) = \dfrac{{{\text{Favorable balls}}}}{{{\text{Total balls}}}} = \dfrac{4}{8} = \dfrac{1}{2}$
Therefore probability of drawing a red ball from the Second bag $ \Rightarrow p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right) = \dfrac{{{\text{Favorable balls}}}}{{{\text{Total balls}}}} = \dfrac{2}{8} = \dfrac{1}{4}$
Therefore probability of drawing a ball from the first bag, given that the ball is red is given by$p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right)$.
Now we have to use the Bayes’ theorem to find out the total probability of drawing a ball from the first bag, given that the ball is red.
Bayes’ Theorem - In probability theory and statistics, Bayes' theorem describes the probability of an event, based on prior knowledge of conditions that might be related to the event.
Here,
${x_1},{x_2},{A_1}$ = events.
$p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right)$= Probability of ${x_1}$ given ${A_1}$is true.
$p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right)$ = Probability of ${A_1}$ given ${x_1}$ is true.
$p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right)$ = Probability of ${A_1}$ given ${x_2}$ is true.
$p\left( {{x_1}} \right)$, $p\left( {{x_2}} \right)$ = independent probabilities of ${x_1}$ and ${x_2}$.
So, by Bayes’ theorem we have
$ \Rightarrow p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right) = \dfrac{{p\left( {{x_1}} \right).p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right)}}{{p\left( {{x_1}} \right).p\left( {\dfrac{{{A_1}}}{{{x_1}}}} \right) + p\left( {{x_2}} \right).p\left( {\dfrac{{{A_1}}}{{{x_2}}}} \right)}}$
$ \Rightarrow p\left( {\dfrac{{{x_1}}}{{{A_1}}}} \right) = \dfrac{{\dfrac{1}{2}.\dfrac{1}{2}}}{{\dfrac{1}{2}.\dfrac{1}{2} + \dfrac{1}{2}.\dfrac{1}{4}}} = \dfrac{{\dfrac{1}{4}}}{{\dfrac{1}{4} + \dfrac{1}{8}}} = \dfrac{{\dfrac{1}{4}}}{{\dfrac{3}{8}}} = \dfrac{2}{3} = 0.66$
Therefore the required probability of drawing a ball from the first bag, given that the ball is red is 0.66.
Note: In such types of questions first find out the probability of selecting a bag then find out the probability of drawing a red ball from each bag then apply Bayes’ theorem we easily calculate the required probability of drawing a ball from the first bag, given that the ball is red.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Harsha Charita was written by A Kalidasa B Vishakhadatta class 7 social science CBSE
Which are the Top 10 Largest Countries of the World?
Banabhatta wrote Harshavardhanas biography What is class 6 social science CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE