Answer

Verified

448.8k+ views

Hint: We know that the range of \[{{\sin }^{-1}}2x\sqrt{1-{{x}^{2}}}\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\], so the same would be for \[2{{\cos }^{-1}}x\]. From this, find the range of \[{{\cos }^{-1}}x\] and then find the value of x for which it is true.

Complete step-by-step answer:

We are given an equation \[2{{\cos }^{-1}}x={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]. We have to solve it and find all the values of x that satisfy this.

Let us consider the equation i.e. : \[2{{\cos }^{-1}}x={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]

We know that the range of \[{{\sin }^{-1}}t\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].

So, we also get the range \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] as \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]

Or, \[\dfrac{-\pi }{2}\le {{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\le \dfrac{\pi }{2}\]

Since, we know that \[2{{\cos }^{-1}}x={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] then, \[2{{\cos }^{-1}}x\] will also have the same range as \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]. So, we get,

\[\dfrac{-\pi }{2}\le 2{{\cos }^{-1}}x\le \dfrac{\pi }{2}\]

By dividing 2 in the above equation, we get,

\[\dfrac{\dfrac{-\pi }{2}}{2}\le \dfrac{2{{\cos }^{-1}}x}{2}\le \dfrac{\dfrac{\pi }{2}}{2}\]

Or, \[\dfrac{-\pi }{4}\le {{\cos }^{-1}}x\le \dfrac{\pi }{4}\]

Now, we will draw the graph of \[{{\cos }^{-1}}x\] to analyze the above inequality.

Since, we can see that the range of \[{{\cos }^{-1}}x\] is \[\left[ 0,\pi \right]\], so we will get the range of \[{{\cos }^{-1}}x\] in this question as, \[0\le {{\cos }^{-1}}x\le \dfrac{\pi }{4}\] because \[{{\cos }^{-1}}x\] cannot take negative values.

For \[{{\cos }^{-1}}x=0\], we get x = cos 0 = 1.

And for \[{{\cos }^{-1}}x=\dfrac{\pi }{4}\], we get \[x=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\].

So, we get, \[\dfrac{1}{\sqrt{2}}\le x\le 1\].

Hence, option (c) is the right answer.

Note: In this question, we can also consider the graph of \[{{\cos }^{-1}}x\] to solve the inequality

\[0\le {{\cos }^{-1}}x\le \dfrac{\pi }{4}\]

From the above graph, we can see that, when \[{{\cos }^{-1}}x\in \left[ 0,\dfrac{\pi }{4} \right]\], then \[x\in \left[ \dfrac{1}{\sqrt{2}},1 \right]\]. In questions involving the inverse trigonometric functions, take the special case of range and domain of the function.

Complete step-by-step answer:

We are given an equation \[2{{\cos }^{-1}}x={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]. We have to solve it and find all the values of x that satisfy this.

Let us consider the equation i.e. : \[2{{\cos }^{-1}}x={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]

We know that the range of \[{{\sin }^{-1}}t\] is \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\].

So, we also get the range \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] as \[\left[ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right]\]

Or, \[\dfrac{-\pi }{2}\le {{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\le \dfrac{\pi }{2}\]

Since, we know that \[2{{\cos }^{-1}}x={{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\] then, \[2{{\cos }^{-1}}x\] will also have the same range as \[{{\sin }^{-1}}\left( 2x\sqrt{1-{{x}^{2}}} \right)\]. So, we get,

\[\dfrac{-\pi }{2}\le 2{{\cos }^{-1}}x\le \dfrac{\pi }{2}\]

By dividing 2 in the above equation, we get,

\[\dfrac{\dfrac{-\pi }{2}}{2}\le \dfrac{2{{\cos }^{-1}}x}{2}\le \dfrac{\dfrac{\pi }{2}}{2}\]

Or, \[\dfrac{-\pi }{4}\le {{\cos }^{-1}}x\le \dfrac{\pi }{4}\]

Now, we will draw the graph of \[{{\cos }^{-1}}x\] to analyze the above inequality.

Since, we can see that the range of \[{{\cos }^{-1}}x\] is \[\left[ 0,\pi \right]\], so we will get the range of \[{{\cos }^{-1}}x\] in this question as, \[0\le {{\cos }^{-1}}x\le \dfrac{\pi }{4}\] because \[{{\cos }^{-1}}x\] cannot take negative values.

For \[{{\cos }^{-1}}x=0\], we get x = cos 0 = 1.

And for \[{{\cos }^{-1}}x=\dfrac{\pi }{4}\], we get \[x=\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\].

So, we get, \[\dfrac{1}{\sqrt{2}}\le x\le 1\].

Hence, option (c) is the right answer.

Note: In this question, we can also consider the graph of \[{{\cos }^{-1}}x\] to solve the inequality

\[0\le {{\cos }^{-1}}x\le \dfrac{\pi }{4}\]

From the above graph, we can see that, when \[{{\cos }^{-1}}x\in \left[ 0,\dfrac{\pi }{4} \right]\], then \[x\in \left[ \dfrac{1}{\sqrt{2}},1 \right]\]. In questions involving the inverse trigonometric functions, take the special case of range and domain of the function.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE