
15 liters of mixtures contains 20 percent alcohol and the rest water. If 3 liters of water be mixed with it, the percentage of alcohol in the new mixture would be
$
{\text{a}}{\text{. 15 percent}} \\
{\text{b}}{\text{. 16}}\dfrac{2}{3}{\text{ percent}} \\
{\text{c}}{\text{. 17 percent}} \\
{\text{d}}{\text{. 18}}\dfrac{1}{2}{\text{ percent}}{\text{.}} \\
$
Answer
611.7k+ views
Hint – Assume any variable be the liters of alcohol then first try to find out liters of alcohol as variable is the 20 percent of 15 so, use this concept to reach the solution of the problem.
Given data
15 liters of mixtures contains 20 percent alcohol and the rest water.
Let alcohol be x liters.
So, water will be (15 - x) liters.
Now, according to the given condition, x is the 20 percent of 15.
$ \Rightarrow x = \dfrac{{20}}{{100}} \times 15 = \dfrac{{15}}{5} = 3$ Liters.
So water will be (15 - 3) = 12 liters.
Now it is given that 3 liters of water is mixed with the mixture.
So, total liters in the new mixture will be $\left( {15 + 3} \right) = 18$liters.
Now we have to find out percentage of alcohol in new mixture,
Let, the percentage of alcohol in the new mixture be y.
So, y is equal to liters of alcohol divided by total liters in the new mixture multiplied by 100.
$y = \dfrac{3}{{18}} \times 100 = \dfrac{{100}}{6} = \dfrac{{50}}{3} = 16\dfrac{2}{3}$ Percent.
So, $16\dfrac{2}{3}$ is the required percentage of alcohol in the new mixture.
Hence, option (b) is correct.
Note – In such types of questions first find out the liters of alcohol from the given mixture as above, then calculate the value of total liters in the new mixture, then divide liters of alcohol to the total liters in the new mixture and multiply by 100, which is the required percentage of alcohol in the new mixture.
Given data
15 liters of mixtures contains 20 percent alcohol and the rest water.
Let alcohol be x liters.
So, water will be (15 - x) liters.
Now, according to the given condition, x is the 20 percent of 15.
$ \Rightarrow x = \dfrac{{20}}{{100}} \times 15 = \dfrac{{15}}{5} = 3$ Liters.
So water will be (15 - 3) = 12 liters.
Now it is given that 3 liters of water is mixed with the mixture.
So, total liters in the new mixture will be $\left( {15 + 3} \right) = 18$liters.
Now we have to find out percentage of alcohol in new mixture,
Let, the percentage of alcohol in the new mixture be y.
So, y is equal to liters of alcohol divided by total liters in the new mixture multiplied by 100.
$y = \dfrac{3}{{18}} \times 100 = \dfrac{{100}}{6} = \dfrac{{50}}{3} = 16\dfrac{2}{3}$ Percent.
So, $16\dfrac{2}{3}$ is the required percentage of alcohol in the new mixture.
Hence, option (b) is correct.
Note – In such types of questions first find out the liters of alcohol from the given mixture as above, then calculate the value of total liters in the new mixture, then divide liters of alcohol to the total liters in the new mixture and multiply by 100, which is the required percentage of alcohol in the new mixture.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

