Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 9 Maths Chapter 2 Polynomials Exercise 2.3 (2025-26)

ffImage
banner
widget title icon
Latest Updates

Class 9 Maths Exercise 2.3 – Step-by-Step Solutions

Class 9 Maths Chapter 2 Exercise 2.3 focuses on important problems from the Polynomials chapter and helps students understand how to solve different types of polynomial questions correctly. These NCERT Class 9 Maths Chapter 2 Exercise 2.3 solutions explain each step clearly so students can follow the method without confusion. The Exercise 2.3 Class 9 solutions are written as per the CBSE exam pattern and cover all questions given in the textbook. Practising Polynomials Class 9 Exercise 2.3 helps students build confidence and improve accuracy while solving similar problems in exams. All Class 9 Maths Ex 2.3 answers are prepared by subject experts at Vedantu and follow the latest NCERT guidelines. Students can use these solutions to clear doubts quickly and understand how marks are awarded for each step in the solution.

toc-symbolTable of Content
toggle-arrow
Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
Watch videos on

NCERT Solutions For Class 9 Maths Chapter 2 Polynomials Exercise 2.3 (2025-26)
Previous
Next
Vedantu 9&10
Subscribe
Download Notes
iconShare
Polynomials in One Shot | CBSE Class 9 Maths Chapter 2 | CBSE lX - One Shot | Vedantu Class 9 and 10
5.2K likes
112.6K Views
4 years ago
Vedantu 9&10
Subscribe
Download Notes
iconShare
Polynomials L-2 | Factor Theorem and Algebraic Identities | CBSE Class 9 Math - Umang 2021 | Vedantu
7K likes
137.6K Views
4 years ago

NCERT Class 9 Maths Chapter 2 Exercise 2.3 solutions

1. Determine which of the following polynomials has\[\left( {x + 1} \right)\] a factor:

i. \[{x^3} + {x^2} + x + 1\]

Ans: We know that, 

Zero of \[x + 1\] is \[ - 1\]

Given that, 

\[p\left( x \right) = {x^3} + {x^2} + x + 1\]

Now, for \[x =  - 1\]

\[p\left( { - 1} \right) = {\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} + \left( { - 1} \right) + 1\]

\[p\left( { - 1} \right) =  - 1 + 1 - 1 + 1\]

\[p\left( { - 1} \right) = 0\]

Therefore, by the Factor Theorem, \[x + 1\] is a factor of \[{x^3} + {x^2} + x + 1\].

ii. \[{x^4} + {x^3} + {x^2} + x + 1\]

Ans: We know that, 

Zero of \[x + 1\] is \[ - 1\]

Given that, 

\[p\left( x \right) = {x^4} + {x^3} + {x^2} + x + 1\]

Now, for \[x =  - 1\]

\[p\left( { - 1} \right) = {\left( { - 1} \right)^4} + {\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} + \left( { - 1} \right) + 1\]

\[p\left( { - 1} \right) = 1 - 1 + 1 - 1 + 1\]

\[p\left( { - 1} \right) = 1\]

Therefore, by the Factor Theorem, \[x + 1\] is not a factor of \[{x^4} + {x^3} + {x^2} + x + 1\].

iii. \[{x^4} + 3{x^3} + 3{x^2} + x + 1\]

Ans: We know that, 

Zero of \[x + 1\] is \[ - 1\]

Given that, 

\[p\left( x \right) = {x^4} + 3{x^3} + 3{x^2} + x + 1\]

Now, for \[x =  - 1\]

\[p\left( { - 1} \right) = {\left( { - 1} \right)^4} + 3{\left( { - 1} \right)^3} + 3{\left( { - 1} \right)^2} + \left( { - 1} \right) + 1\]

\[p\left( { - 1} \right) = 1 - 3 + 3 - 1 + 1\]

\[p\left( { - 1} \right) = 1\]

Therefore, by the Factor Theorem, \[x + 1\] is not a factor of \[{x^4} + 3{x^3} + 3{x^2} + x + 1\].

iv. \[{x^3} + {x^2} - \left( {2 + \sqrt 2 } \right)x + \sqrt 2 \]

Ans: We know that, 

Zero of \[x + 1\] is \[ - 1\]

Given that, 

\[p\left( x \right) = {x^3} + {x^2} - \left( {2 + \sqrt 2 } \right)x + \sqrt 2 \]

Now, for \[x =  - 1\]

\[p\left( { - 1} \right) = {\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} - \left( {2 + \sqrt 2 } \right)\left( { - 1} \right) + \sqrt 2 \]

\[p\left( { - 1} \right) =  - 1 + 1 + 2 - \sqrt 2  + \sqrt 2 \]

\[p\left( { - 1} \right) = 2 + 2\sqrt 2 \]

Therefore, by the Factor Theorem, \[x + 1\] is not a factor of\[{x^3} + {x^2} - \left( {2 + \sqrt 2 } \right)x + \sqrt 2 \].

2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:

i. \[p\left( x \right) = 2{x^3} + {x^2} - 2x - 1\], \[g\left( x \right) = x + 1\]

Ans: Given that, 

\[p\left( x \right) = 2{x^3} + {x^2} - 2x - 1\]

\[g\left( x \right) = x + 1\]

We know that, 

Zero of \[g\left( x \right)\] is \[ - 1\]

Now,

\[p\left( { - 1} \right) = 2{\left( { - 1} \right)^3} + {\left( { - 1} \right)^2} - 2\left( { - 1} \right) - 1\]

\[p\left( { - 1} \right) =  - 2 + 1 + 2 - 1\]

\[p\left( { - 1} \right) = 0\]

Therefore, \[g\left( x \right) = x + 1\] is a factor of\[p\left( x \right) = 2{x^3} + {x^2} - 2x - 1\].


ii. \[p\left( x \right) = {x^3} + 3{x^2} + 3x + 1\], \[g\left( x \right) = x + 2\]

Ans: Given that, 

\[p\left( x \right) = {x^3} + 3{x^2} + 3x + 1\]

\[g\left( x \right) = x + 2\]

We know that, 

Zero of \[g\left( x \right)\] is \[ - 2\]

Now,

\[p\left( { - 2} \right) = {\left( { - 2} \right)^3} + 3{\left( { - 2} \right)^2} + 3\left( { - 2} \right) + 1\]

\[p\left( { - 2} \right) =  - 8 + 12 - 6 + 1\]

\[p\left( { - 2} \right) =  - 1\]

Therefore, \[g\left( x \right) = x + 2\] is not a factor of \[p\left( x \right) = {x^3} + 3{x^2} + 3x + 1\].

iii. \[p\left( x \right) = {x^3} - 4{x^2} + x + 6\], \[g\left( x \right) = x - 3\]

Ans: Given that, 

\[p\left( x \right) = {x^3} - 4{x^2} + x + 6\]

\[g\left( x \right) = x - 3\]

We know that, 

Zero of \[g\left( x \right)\] is \[3\]

Now,

\[p\left( 3 \right) = {\left( 3 \right)^3} - 4{\left( 3 \right)^2} + \left( 3 \right) + 6\]

\[p\left( 3 \right) = 27 - 36 + 3 + 6\]

\[p\left( 3 \right) = 0\]

Therefore, \[g\left( x \right) = x - 3\] is a factor of \[p\left( x \right) = {x^3} - 4{x^2} + x + 6\].


3. Find the value of \[k\], if \[x - 1\] is a factor of \[p\left( x \right)\] in each of the following cases:

i. \[p\left( x \right) = {x^2} + x + k\]

Ans: Given that \[x - 1\] is a factor of \[p\left( x \right) = {x^2} + x + k\]

Thus, \[1\] is the zero of the given \[p\left( x \right)\] 

\[ \Rightarrow p\left( 1 \right) = 0\]

\[ \Rightarrow p\left( 1 \right) = {\left( 1 \right)^2} + \left( 1 \right) + k = 0\]

\[ \Rightarrow 1 + 1 + k = 0\]

\[ \Rightarrow k =  - 2\]

Therefore, the value of \[k\], if \[x - 1\] is a factor of \[p\left( x \right) = {x^2} + x + k\] is \[ - 2\].


ii. \[p\left( x \right) = 2{x^2} + kx + \sqrt 2 \]

Ans: Given that \[x - 1\] is a factor of \[p\left( x \right) = 2{x^2} + kx + \sqrt 2 \]

Thus, \[1\] is the zero of the given \[p\left( x \right)\] 

\[ \Rightarrow p\left( 1 \right) = 0\]

\[ \Rightarrow p\left( 1 \right) = 2{\left( 1 \right)^2} + k\left( 1 \right) + \sqrt 2  = 0\]

\[ \Rightarrow 2 + k + \sqrt 2  = 0\]

\[ \Rightarrow k =  - \left( {2 + \sqrt 2 } \right)\]

Therefore, the value of \[k\], if \[x - 1\] is a factor of \[p\left( x \right) = 2{x^2} + kx + \sqrt 2 \] is \[ - \left( {2 + \sqrt 2 } \right)\].


iii. \[p\left( x \right) = k{x^2} - \sqrt 2 x + 1\]

Ans: Given that \[x - 1\] is a factor of \[p\left( x \right) = k{x^2} - \sqrt 2 x + 1\]

Thus, \[1\] is the zero of the given \[p\left( x \right)\] 

\[ \Rightarrow p\left( 1 \right) = 0\]

\[ \Rightarrow p\left( 1 \right) = k{\left( 1 \right)^2} - \sqrt 2 \left( 1 \right) + 1 = 0\]

\[ \Rightarrow k - \sqrt 2  + 1 = 0\]

\[ \Rightarrow k = \sqrt 2  - 1\]

Therefore, the value of \[k\], if \[x - 1\] is a factor of \[p\left( x \right) = k{x^2} - \sqrt 2 x + 1\] is $({\sqrt 2}-1)$.


iv. \[p\left( x \right) = k{x^2} + 3x + k\]

Ans: Given that \[x - 1\] is a factor of \[p\left( x \right) = k{x^2} + 3x + k\]

Thus, \[1\] is the zero of the given \[p\left( x \right)\] 

\[ \Rightarrow p\left( 1 \right) = 0\]

\[ \Rightarrow p\left( 1 \right) = k{\left( 1 \right)^2} + 3\left( 1 \right) + k = 0\]

\[ \Rightarrow k - 3 + k = 0\]

\[ \Rightarrow k = \frac{3}{2}\]

Therefore, the value of \[k\], if \[x - 1\] is a factor of \[p\left( x \right) = k{x^2} + 3x + k\] is \[\frac{3}{2}\].

4. Factorise:

i. \[12{x^2} - 7x + 1\]

Ans: Given that, 

\[p\left( x \right) = 12{x^2} - 7x + 1\]

Splitting the middle term

\[ \Rightarrow 12{x^2} - 4x + 3x + 1\]

\[ \Rightarrow 4x\left( {3x - 1} \right) - 1\left( {3x - 1} \right)\]

\[ \Rightarrow \left( {3x - 1} \right)\left( {4x - 1} \right)\]

Therefore,  \[12{x^2} - 4x + 3x + 1 = \left( {3x - 1} \right)\left( {4x - 1} \right)\].

ii. \[2{x^2} + 7x + 3\]

Ans: Given that, 

\[p\left( x \right) = 2{x^2} + 7x + 3\]

Splitting the middle term

\[ \Rightarrow 2{x^2} + x + 6x + 3\]

\[ \Rightarrow x\left( {2x + 1} \right) + 3\left( {2x - 1} \right)\]

\[ \Rightarrow \left( {2x + 1} \right)\left( {x + 3} \right)\]

Therefore, \[2{x^2} + x + 6x + 3 = \left( {2x + 1} \right)\left( {x + 3} \right)\].

iii. \[6{x^2} + 5x - 6\]

Ans: Given that, 

\[p\left( x \right) = 6{x^2} + 5x - 6\]

Splitting the middle term

\[ \Rightarrow 6{x^2} + 9x - 4x - 6\]

\[ \Rightarrow 3x\left( {2x + 3} \right) - 2\left( {2x + 3} \right)\]

\[ \Rightarrow \left( {2x + 3} \right)\left( {3x - 2} \right)\]

Therefore,  \[6{x^2} + 9x - 4x - 6 = \left( {2x + 3} \right)\left( {3x - 2} \right)\].

iv. \[3{x^2} - x - 4\]

Ans: Given that, 

\[p\left( x \right) = 3{x^2} - x - 4\]

Splitting the middle term

\[ \Rightarrow 3{x^2} - 4x + 3x - 4\]

\[ \Rightarrow x\left( {3x - 4} \right) + 1\left( {3x - 4} \right)\]

\[ \Rightarrow \left( {3x - 4} \right)\left( {x + 1} \right)\]

Therefore,  \[3{x^2} - 4x + 3x - 4 = \left( {3x - 4} \right)\left( {x + 1} \right)\].

5. Factorise:

i. \[{x^3} - 2{x^2} - x + 2\]

Ans: Given that, 

\[p\left( x \right) = {x^3} - 2{x^2} - x + 2\]

Rearranging the above,

\[ \Rightarrow {x^3} - x - 2{x^2} + 2\]

\[ \Rightarrow x\left( {{x^2} - 1} \right) - 2\left( {{x^2} - 1} \right)\]

\[ \Rightarrow \left( {{x^2} - 1} \right)\left( {x - 2} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)\]

Therefore, \[{x^3} - 2{x^2} - x + 2 = \left( {x + 1} \right)\left( {x - 1} \right)\left( {x - 2} \right)\].

ii. \[{x^3} - 3{x^2} - 9x - 5\]

Ans: Given that, 

\[p\left( x \right) = {x^3} - 3{x^2} - 9x - 5\]

\[ \Rightarrow {x^3} + {x^2} - 4{x^2} - 4x - 5x - 5\]

\[ \Rightarrow {x^2}\left( {x + 1} \right) - 4x\left( {x + 1} \right) - 5\left( {x + 1} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left( {{x^2} - 4x - 5} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left( {{x^2} - 5x + x - 5} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left[ {x\left( {x - 5} \right) + 1\left( {x - 5} \right)} \right]\]

\[ \Rightarrow \left( {x + 1} \right)\left( {x + 1} \right)\left( {x - 5} \right)\]

Therefore, \[{x^3} - 3{x^2} - 9x - 5 = \left( {x + 1} \right)\left( {x + 1} \right)\left( {x - 5} \right)\].

iii. \[{x^3} + 13{x^2} + 32x + 20\]

Ans: Given that, 

\[p\left( x \right) = {x^3} + 13{x^2} + 32x + 20\]

\[ \Rightarrow {x^3} + {x^2} + 12{x^2} + 12x + 20x + 20\]

\[ \Rightarrow {x^2}\left( {x + 1} \right) + 12x\left( {x + 1} \right) + 20\left( {x + 1} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left( {{x^2} + 12x + 20} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left( {{x^2} + 2x + 10x + 20} \right)\]

\[ \Rightarrow \left( {x + 1} \right)\left[ {x\left( {x + 2} \right) + 10\left( {x + 2} \right)} \right]\]

\[ \Rightarrow \left( {x + 1} \right)\left( {x + 10} \right)\left( {x + 2} \right)\] 

Therefore, \[{x^3} + 13{x^2} + 32x + 20 = \left( {x + 1} \right)\left( {x + 10} \right)\left( {x + 2} \right)\].

iv. \[2{y^3} + {y^2} - 2y - 1\]

Ans: Given that, 

\[p\left( y \right) = 2{y^3} + {y^2} - 2y - 1\]

\[ \Rightarrow 2{y^3} - 2{y^2} + 3{y^2} - 3y + y - 1\]

\[ \Rightarrow 2{y^2}\left( {y - 1} \right) + 3y\left( {y - 1} \right) + 1\left( {y - 1} \right)\]

\[ \Rightarrow \left( {y - 1} \right)\left( {2{y^2} + 3y + 1} \right)\]

\[ \Rightarrow \left( {y - 1} \right)\left( {2{y^2} + 2y + y + 1} \right)\]

\[ \Rightarrow \left( {y - 1} \right)\left[ {2y\left( {y + 1} \right) + 1\left( {y + 1} \right)} \right]\]

\[ \Rightarrow \left( {y - 1} \right)\left( {2y + 1} \right)\left( {y + 1} \right)\]

Therefore, \[2{y^3} + {y^2} - 2y - 1 = \left( {y - 1} \right)\left( {2y + 1} \right)\left( {y + 1} \right)\].


Conclusion

Class 9 Maths Ex 2.3 of Chapter 2 - Polynomials, is crucial for a solid foundation in math. Understanding the concept of factoring quadratic expressions is a key takeaway. Vedantu's NCERT solutions can guide you in conquering quadratic equations using factorization. Regular practice with NCERT solutions provided by platforms like Vedantu can enhance comprehension and problem-solving skills. Pay attention to the step-by-step solutions provided, grasp the underlying principles, and ensure clarity on the concepts before moving forward. Consistent practice and understanding will lead to proficiency in AP-related problems


NCERT Solutions for Class 9 Maths Chapter 2 Exercises

Exercise

Number of Questions

Exercise 2.1

5 Questions & Solutions

Exercise 2.2

4 Questions & Solutions

Exercise 2.4

5 Questions & Solutions


CBSE Class 9 Maths Chapter 2 Polynomials Other Study Materials


Chapter-Specific NCERT Solutions for Class 9 Maths

Given below are the chapter-wise NCERT Solutions for Class 9 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.



Important Study Materials for Class 9 Maths


WhatsApp Banner

FAQs on NCERT Solutions For Class 9 Maths Chapter 2 Polynomials Exercise 2.3 (2025-26)

1. What is included in Class 9 Maths Chapter 2 Exercise 2.3 solutions?

Class 9 Maths Chapter 2 Exercise 2.3 solutions include step-by-step answers for all questions given in NCERT Class 9 Maths Chapter 2 Exercise 2.3, strictly following the NCERT textbook format.

2. Where can students access Exercise 2.3 Class 9 NCERT Solutions?

Students can access Exercise 2.3 Class 9 solutions through NCERT Class 9 Maths Chapter 2 Exercise 2.3 pages that present answers in a clear, exam-oriented structure.

3. Are Ex 2.3 Class 9 solutions written as per CBSE answer format?

Yes, Ex 2.3 Class 9 solutions are written as per CBSE answer-writing standards, showing each calculation step clearly for Class 9 Maths assessments.

4. What type of questions are covered in Class 9 Maths Ex 2.3?

Class 9 Maths Ex 2.3 covers only the questions prescribed in NCERT Class 9 Maths Chapter 2 Exercise 2.3, and each one is solved methodically in the provided solutions.

5. Who should use NCERT Class 9 Maths Chapter 2 Exercise 2.3 solutions?

NCERT Class 9 Maths Chapter 2 Exercise 2.3 solutions are suitable for Class 9 Maths students who want accurate, NCERT-aligned answers for school tests and exams.

6. How are steps shown in 2.3 Class 9 Maths solutions?

In 2.3 Class 9 Maths solutions, every step is shown clearly and logically, ensuring students understand how marks are awarded in Class 9 Maths exams.

7. Do Polynomials Class 9 Exercise 2.3 solutions match the NCERT textbook order?

Yes, Polynomials Class 9 Exercise 2.3 solutions follow the exact question order and numbering given in the NCERT Class 9 Maths Chapter 2 textbook.

8. Can Class 9 Maths Chapter 2 Exercise 2.3 solutions be used for school exams?

Yes, Class 9 Maths Chapter 2 Exercise 2.3 solutions can be confidently used for school exams as they are based entirely on NCERT and CBSE guidelines.

9. Is Exercise 2.3 Class 9 important from an exam perspective?

Yes, Exercise 2.3 Class 9 is an important part of Class 9 Maths Chapter 2, and all required question formats are addressed in the NCERT solutions.

10. Why do students prefer Class 9 Maths Ex 2.3 NCERT Solutions?

Students prefer Class 9 Maths Ex 2.3 NCERT Solutions because they provide clear steps, correct answers, and a structure that matches NCERT Class 9 Maths Chapter 2 Exercise 2.3 exactly.