Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 11 Maths Chapter 8 Sequences And Series Ex 8.2

ffImage

NCERT Solutions for Maths Class 11 Maths Chapter 8 Exercise 8.2 - FREE PDF Download

Class 11 Maths Chapter 8 Exercise 8.2 is designed to help you understand the properties and formulas related to arithmetic sequences, which are a fundamental concept in mathematics. In this exercise, you will learn how to identify an arithmetic progression, find the common difference, and calculate the nth term of an AP. Additionally, students will practice finding the sum of the first n terms of an arithmetic sequence in exercise 8.2 class 11 maths chapter 8 solutions pdf. These skills are essential for solving problems related to sequences and series, which have applications in various fields, including finance, computer science, and physics. Students can download the revised Class 11 Maths NCERT Solutions from our page which is prepared so that you can understand it easily.

toc-symbol
Table of Content
1. NCERT Solutions for Maths Class 11 Maths Chapter 8 Exercise 8.2 - FREE PDF Download
2. Glance on NCERT Solutions Maths Chapter 8 Exercise 8.2 Class 11 | Vedantu
3. Formulas Used in Class 11 Chapter 8 Exercise 8.2 
4. Access NCERT Solutions for Maths Class 11 Chapter 8 - Sequences and Series
    4.1Exercise 8.2
5. Class 11 Maths Chapter 8: Exercises Breakdown
6. CBSE Class 11 Maths Chapter 8 Other Study Materials
7. Chapter-Specific NCERT Solutions for Class 11 Maths
8. Important Related Links for CBSE Class 11 Maths
FAQs


These solutions are aligned with the updated CBSE guidelines for Class 11, ensuring students are well-prepared for exams. Access the Class 11 Maths Syllabus here.


Glance on NCERT Solutions Maths Chapter 8 Exercise 8.2 Class 11 | Vedantu

  • NCERT Solution for Class 11 Maths NCERT Solutions Chapter 8 Exercise 8.2 covers the topic of Geometric Progression (G. P.) and the Relationship Between A.M. and G.M.

  • Geometric Progression (GP) - Let there be a sequence of numbers where each term is obtained by multiplying the previous term by a fixed value. This fixed value is called the common ratio (r). Such a sequence is called a Geometric Progression. 

  • NCERT solutions will equip you with formulas to find specific terms in a GP, the sum of a finite number of terms (series), and other properties related to GPs.

  • Relationship Between AM and GM The Arithmetic Mean (AM) of a set of numbers is simply their average. 

  • The Geometric Mean (GM) is calculated by multiplying all the numbers and then taking the nth root of the product (where n is the number of terms). Interestingly, there's a special relationship between AM and GM for a set of positive numbers. 

  • Exercise 8.2 Class 11 Maths Chapter 8 Solutions PDF covers 32 fully solved questions and solutions.


Formulas Used in Class 11 Chapter 8 Exercise 8.2 

  • nth term: $Tn = a r^{n-1}$

  • Sum of n terms:  $Sn = a (1 - r^n) / (1 - r)$

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Maths Class 11 Chapter 8 - Sequences and Series

Exercise 8.2

1. Find the $\mathbf{2}{{\mathbf{0}}^{\mathbf{th}}}$ and ${{\mathbf{n}}^{\mathbf{th}}}$ terms of the G.P. $\dfrac{\mathbf{5}}{\mathbf{2}}\mathbf{,}\dfrac{\mathbf{5}}{\mathbf{4}}\mathbf{,}\dfrac{\mathbf{5}}{\mathbf{8}}\mathbf{,}...$.

Ans:

The G.P. is provided as $\dfrac{\text{5}}{\text{2}}\text{,}\dfrac{\text{5}}{\text{4}}\text{,}\dfrac{\text{5}}{\text{8}}\text{,}...$.

Clearly, $a=\dfrac{5}{2}$ is the first term and $r=\dfrac{\dfrac{5}{4}}{\dfrac{5}{2}}=\dfrac{1}{2}$ is the common ratio of the G.P.

Therefore, the ${{20}^{th}}$ term of the G.P. is

$\begin{align}   & {{a}_{20}}=a{{r}^{20-1}} \\  & =\dfrac{5}{2}{{\left( \dfrac{1}{2} \right)}^{19}} \\   & =\dfrac{5}{2\times {{2}^{19}}} \\   & =\dfrac{5}{{{2}^{20}}}. \\ \end{align}$ 

Also, the ${{n}^{th}}$ term of the G.P. is 

$\begin{align}   & {{a}_{n}}=a{{r}^{n-1}} \\  & =\dfrac{5}{2}{{\left( \dfrac{1}{2} \right)}^{n-1}} \\  & =\dfrac{5}{2\cdot {{2}^{n-1}}} \\  & =\dfrac{5}{{{2}^{n}}}. \\ \end{align}$

Hence, the ${{20}^{th}}$ and ${{n}^{th}}$ terms of the G.P. are respectively $\dfrac{5}{{{2}^{20}}}$ and $\dfrac{5}{{{2}^{n}}}$.


2. Find the $\mathbf{1}{{\mathbf{2}}^{\mathbf{th}}}$ term of the G.P. whose ${{\mathbf{8}}^{\mathbf{th}}}$ term is $\mathbf{192}$ and the common ratio is $\mathbf{2}$.

Ans:

The G.P. described in the problem has the common ratio $r=2$.

Suppose that the first term of the G.P. is $a$.

Then, the ${{8}^{th}}$ term of the G.P. is given by

${{a}_{8}}=a{{r}^{8-1}}$$=a{{r}^{7}}$

$\Rightarrow a{{r}^{7}}=192$

$\Rightarrow a{{\left( 2 \right)}^{7}}=192$

$\Rightarrow a{{\left( 2 \right)}^{7}}={{\left( 2 \right)}^{6}}\times 3$

$\Rightarrow a=\dfrac{{{2}^{6}}\times 3}{{{2}^{7}}}=\dfrac{3}{2}$.

Thus, the ${{12}^{th}}$ term,

$\begin{align}   & {{a}_{12}}=a{{r}^{12-1}} \\  & =a{{r}^{11}} \\  & =\dfrac{3}{2}{{\left( 2 \right)}^{11}} \\  & =3{{\left( 2 \right)}^{10}} \\  & =3072. \\ \end{align}$

Hence, the ${{12}^{th}}$ term of the G.P. is $3072$.


3. The ${{\mathbf{5}}^{\mathbf{th}}}\mathbf{,}\,{{\mathbf{8}}^{\mathbf{th}}}\mathbf{,}$ and $\mathbf{1}{{\mathbf{1}}^{\mathbf{th}}}$ terms of a G.P. are $\mathbf{p,}\,\,\mathbf{q,}$ and $\mathbf{s}$ respectively. Show that ${{\mathbf{q}}^{\mathbf{2}}}\mathbf{=ps}$.

Ans:

Suppose that $a$ and $r$ are the first term and the common ratio of the given G.P. Then, by the condition provided to us,

the ${{5}^{th}}$ term of G.P.,

${{a}_{5}}=a{{r}^{5-1}}=a{{r}^{4}}=p$                                  …… (i)

The ${{8}^{th}}$ term of the G.P.,

${{a}_{8}}=a{{r}^{8-1}}=a{{r}^{7}}=q$                                  …… (ii)

Also, the ${{11}^{th}}$  term of the G.P.,

${{a}_{11}}=a{{r}^{11-1}}=a{{r}^{10}}=s$                                …… (iii)

Now, divide the equation (ii) by the equation (i). Then, it gives

$\dfrac{a{{r}^{7}}}{a{{r}^{4}}}=\dfrac{q}{p}$

$\Rightarrow {{r}^{3}}=\dfrac{q}{p}$                                               …… (iv)

Again, divide the equation (iii) by the equation (ii). Then, we have

$\dfrac{a{{r}^{10}}}{a{{r}^{7}}}=\dfrac{s}{q}$

$\Rightarrow {{r}^{3}}=\dfrac{s}{q}$                                           …… (v)

Therefore, from the equation (iv) and (v) gives

$\dfrac{q}{p}=\dfrac{s}{q}$

$\Rightarrow {{q}^{2}}=ps$.

Hence, the required result has been shown.


4. The ${{\mathbf{4}}^{\mathbf{th}}}$ term of a G.P. is a square of its second term, and the first term is $\mathbf{-3}$. Determine its ${{\mathbf{7}}^{\mathbf{th}}}$ term.

Ans:

Suppose that $r$ is the common ratio of the G.P.

It is given that the first term $a=-3$.

Now, by the formula, ${{n}^{th}}$ term of a G.P.,
${{a}_{n}}=a{{r}^{n-1}}$.

Therefore,

${{a}_{4}}=a{{r}^{3}}=\left( -3 \right){{r}^{3}}$ and ${{a}_{2}}=a{{r}^{1}}=\left( -3 \right)r$.

So, by the condition provided to us,

$\left( -3 \right){{r}^{3}}={{\left[ \left( -3 \right)r \right]}^{2}}$

$\Rightarrow -3{{r}^{3}}=9{{r}^{2}}$

$\Rightarrow r=-3$.

Thus, the ${{7}^{th}}$ term of the G.P. is given by

$\begin{align}   & {{a}_{7}}=\left( -3 \right){{\left( -3 \right)}^{7-1}} \\  & ={{\left( -3 \right)}^{7}} \\  & =-2187.  \end{align}$

Hence, the ${{7}^{th}}$ term of the geometric progression is $-2187$.


5. Which term of the following sequences:

(a) $\mathbf{2,2}\sqrt{\mathbf{2}}\mathbf{,4,}...$ is $\mathbf{128}$?

Ans:

The sequence provided to us is in a G.P. since the first term is $a=2$ and the common ratio is $r=\dfrac{2\sqrt{2}}{2}=\sqrt{2}$.

So, suppose that the ${{n}^{th}}$ term of the G.P. is $128$.

Therefore, we have

$2{{\left( \sqrt{2} \right)}^{n-1}}=128$

$\Rightarrow {{2}^{\dfrac{n-1}{2}+1}}={{2}^{7}}$

$\Rightarrow \dfrac{n-1}{2}+1=7$

$\Rightarrow \dfrac{n+1}{2}=6$

$\Rightarrow n+1=12$

$\Rightarrow n=11$.

Hence, $128$ is the ${{11}^{th}}$ term of the G.P. (sequence) $\text{2,2}\sqrt{\text{2}}\text{,4,}...$.


(b) $\sqrt{\mathbf{3}}\mathbf{,3,3}\sqrt{\mathbf{3}}\mathbf{,}...$ is $\mathbf{729}$?

Ans:

The sequence provided to us is in a G.P. since the first term is $a=\sqrt{3}$, and the common ratio is $r=\dfrac{3}{\sqrt{3}}=\sqrt{3}$.

Now, suppose that the ${{n}^{th}}$ term of the G.P. is $729$.

Therefore, we have

$a{{r}^{n-1}}=729$

$\Rightarrow \left( \sqrt{3} \right){{\left( \sqrt{3} \right)}^{\cdot n-1}}=729$

$\Rightarrow {{3}^{\dfrac{1}{2}+\dfrac{n-1}{2}}}={{3}^{6}}$

$\Rightarrow \dfrac{1}{2}+\dfrac{n-1}{2}=6$

$\Rightarrow \dfrac{1+n-1}{2}=6$

$\Rightarrow n=12$.

Hence, $729$ is the ${{n}^{th}}$ term of the geometric progression (sequence) $\sqrt{\text{3}}\text{,3,3}\sqrt{\text{3}}\text{,}...$.


(c) $\dfrac{\mathbf{1}}{\mathbf{3}}\mathbf{,}\dfrac{\mathbf{1}}{\mathbf{9}}\mathbf{,}\dfrac{\mathbf{1}}{\mathbf{27}}\mathbf{,}...$ is $\dfrac{\mathbf{1}}{\mathbf{19683}}$?

Ans:

The sequence given to us is in a geometric progression (G.P.) since the first term of it is $a=\dfrac{1}{3}$ and the common ratio is

$r=\dfrac{\dfrac{1}{9}}{\dfrac{1}{3}}=\dfrac{1}{3}$.

Now, suppose that $\dfrac{1}{19683}$ is the ${{n}^{th}}$ term of the G.P.

Therefore, we have

$a{{r}^{n-1}}=\dfrac{1}{19683}$

$\Rightarrow \dfrac{1}{3}{{\left( \dfrac{1}{3} \right)}^{n-1}}=\dfrac{1}{19683}$

$\Rightarrow {{\left( \dfrac{1}{3} \right)}^{n}}={{\left( \dfrac{1}{3} \right)}^{9}}$

$\Rightarrow n=9$.

Hence, $\dfrac{1}{19683}$ is the ${{9}^{th}}$ term of the G.P. (sequence) $\dfrac{\text{1}}{\text{3}}\text{,}\dfrac{\text{1}}{\text{9}}\text{,}\dfrac{\text{1}}{\text{27}}\text{,}...$.


6. For what values of $\mathbf{x}$, the numbers $\mathbf{-}\dfrac{\mathbf{2}}{\mathbf{7}}\mathbf{,}\,\,\mathbf{x,}\,\,\mathbf{-}\dfrac{\mathbf{7}}{\mathbf{2}}$ are in G.P.?

Ans:

The numbers provided to us are $-\dfrac{2}{7},\,x,\,-\dfrac{7}{2}$.

Now, let ${{a}_{1}}=-\dfrac{2}{7}$, ${{a}_{2}}=x$ and ${{a}_{3}}=-\dfrac{7}{2}$.

Then, $\dfrac{{{a}_{2}}}{{{a}_{1}}}=\dfrac{x}{-\dfrac{2}{7}}=\dfrac{-7x}{2}$ and $\dfrac{{{a}_{3}}}{{{a}_{2}}}=\dfrac{-\dfrac{7}{2}}{x}=-\dfrac{7}{2x}$.

Now, if the numbers are in G.P., then

$r=\dfrac{{{a}_{2}}}{{{a}_{1}}}=\dfrac{{{a}_{3}}}{{{a}_{2}}}$

$\Rightarrow \dfrac{-7x}{2}=-\dfrac{7}{2x}$

$\Rightarrow {{x}^{2}}=\dfrac{-2\times 7}{-2\times 7}=1$

$\Rightarrow x=\sqrt{1}$

$\Rightarrow x=\pm 1$.

Hence, the numbers $-\dfrac{2}{7},\,x,\,-\dfrac{7}{2}$  are in G.P. if $x=\pm 1$.


7. Find the sum of the numbers $\mathbf{0}\mathbf{.15,}\,\,\mathbf{0}\mathbf{.015,}\,\,\mathbf{0}\mathbf{.0015,}\,...$ in the G.P. up to $\mathbf{20}$ terms.

Ans:

It is provided that the numbers $\text{0}\text{.15,}\,\,\text{0}\text{.015,}\,\,\text{0}\text{.0015,}\,...$are in geometric progression.

Note that, the first term of the sequence is $a=0.15$ and the common ratio is $r=\dfrac{0.015}{0.15}=0.1$

Now, by the formula, sum of $n$ terms in G.P., we have

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$

Therefore,

${{S}_{20}}=\dfrac{0.15\left[ 1-{{\left( 0.1 \right)}^{20}} \right]}{1-0.1}$

$=\dfrac{0.15}{0.9}\left[ 1-{{\left( 0.1 \right)}^{20}} \right]$

$=\dfrac{15}{90}\left[ 1-{{\left( 0.1 \right)}^{20}} \right]$

$=\dfrac{1}{6}\left[ 1-{{\left( 0.1 \right)}^{20}} \right]$.


8. Find the sum of the numbers $\sqrt{\mathbf{7}}\mathbf{,}\sqrt{\mathbf{21}}\mathbf{,3}\sqrt{\mathbf{7}}\mathbf{,}...$ in the G.P. up to $\mathbf{n}$ terms.

Ans:

It is provided to us that the numbers $\sqrt{7},\sqrt{21},3\sqrt{7},...$ are in geometric progression.

Note that, the first term of the G.P. is $a=\sqrt{7}$ and the common ratio is $r=\dfrac{\sqrt{21}}{\sqrt{7}}=\sqrt{3}$.

Now, by the formula, sum of the first $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$

$\begin{align}   & =\dfrac{\sqrt{7}\left[ 1-{{\left( \sqrt{3} \right)}^{n}} \right]}{1-\sqrt{3}} \\  & =\dfrac{\sqrt{7}\left[ 1-{{\left( \sqrt{3} \right)}^{n}} \right]}{1-\sqrt{3}}\cdot \dfrac{1+\sqrt{3}}{1+\sqrt{3}} \\  & =\dfrac{\sqrt{7}\left[ 1-{{\left( \sqrt{3} \right)}^{n}} \right]\left( 1+\sqrt{3} \right)}{1-3} \\  & =\dfrac{-\sqrt{7}\left( \sqrt{3}+1 \right)\left[ 1-{{\left( \sqrt{3} \right)}^{n}} \right]}{2} \\ \end{align}$

Hence, the sum of the first $n$ terms is given by

${{S}_{n}}=\dfrac{\sqrt{7}\left( 1+\sqrt{3} \right)}{2}\left[ {{\left( 3 \right)}^{\dfrac{n}{2}}}-1 \right]$.


9. Find the sum of the numbers $\mathbf{1,}\,\,\mathbf{-a,}\,\,{{\mathbf{a}}^{\mathbf{2}}}\mathbf{,}\,\mathbf{-}{{\mathbf{a}}^{\mathbf{3}}}\mathbf{,}...$ (if $\mathbf{a}\ne \mathbf{-1}$) in geometric progression up to $\mathbf{n}$ terms.

Ans:

The numbers $1,-a,{{a}^{2}},-{{a}^{3}},...$ provided to us, is in G.P. with the first term $a=1$ and the common ratio $r=\dfrac{-a}{1}=-a$.

Now, by the formula, sum of the first $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$

$=\dfrac{1\left[ 1-{{\left( -a \right)}^{n}} \right]}{1-\left( -a \right)}$

Hence, the sum of $n$ terms of the sequence is given by

${{S}_{n}}=\dfrac{\left[ 1-{{\left( -a \right)}^{n}} \right]}{1+a}$.


10. Find the sum of the numbers ${{\mathbf{x}}^{\mathbf{3}}}\mathbf{,}{{\mathbf{x}}^{\mathbf{5}}}\mathbf{,}{{\mathbf{x}}^{\mathbf{7}}}\mathbf{,}...$(if $\mathbf{x}\ne \mathbf{\pm 1}$) in the geometric progression up to $\mathbf{n}$ terms.

Ans:

The numbers ${{x}^{3}},\,{{x}^{5}},\,{{x}^{7}},...$ are in G.P. with its first term $a={{x}^{3}}$ and the common ratio $r=\dfrac{{{x}^{5}}}{{{x}^{3}}}={{x}^{2}}$.

Therefore, by the formula, sum of the first $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$

$=\dfrac{{{x}^{3}}\left[ 1-{{\left( {{x}^{2}} \right)}^{n}} \right]}{1-{{x}^{2}}}$

$=\dfrac{{{x}^{3}}\left( 1-{{x}^{2n}} \right)}{1-{{x}^{2}}}$.

Hence, the sum of the first $n$ terms of the sequence ${{\text{x}}^{\text{3}}}\text{,}{{\text{x}}^{\text{5}}}\text{,}{{\text{x}}^{\text{7}}}\text{,}...$ is given by  ${{S}_{n}}=\dfrac{{{x}^{3}}\left( 1-{{x}^{2n}} \right)}{1-{{x}^{2}}}$.


11. Evaluate $\sum\limits_{\mathbf{k=1}}^{\mathbf{11}}{\left( \mathbf{2+}{{\mathbf{3}}^{\mathbf{k}}} \right)}$.

Ans:

The given sum can be written as

$\sum\limits_{\text{k=1}}^{\text{11}}{\left( \text{2+}{{\text{3}}^{\text{k}}} \right)}=\sum\limits_{k=1}^{11}{2}+\sum\limits_{\text{k=1}}^{\text{11}}{{{\text{3}}^{\text{k}}}}=22+\sum\limits_{\text{k=1}}^{\text{11}}{{{\text{3}}^{\text{k}}}}$                    …… (i)

Again, $\sum\limits_{\mathbf{k=1}}^{\mathbf{11}}{{{3}^{k}}}={{3}^{1}}+{{3}^{2}}+{{3}^{3}}+\cdot \cdot \cdot +{{3}^{11}}$, which is in a geometric progression with the first term $a=3$ and the common ratio $r=3$.

Therefore, we have

${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$

$\Rightarrow {{S}_{n}}=\dfrac{3\left[ {{3}^{11}}-1 \right]}{3-1}$

$\Rightarrow {{S}_{n}}=\dfrac{3}{2}\left( {{3}^{11}}-1 \right)$

Thus,

$\sum\limits_{k=1}^{11}{{{3}^{k}}}=\dfrac{3}{2}\left( {{3}^{11}}-1 \right)$.                                                 …… (ii)

Hence, from the equation (i) and (ii), it gives

$\sum\limits_{\text{k=1}}^{\text{11}}{\left( \text{2+}{{\text{3}}^{\text{k}}} \right)}=22+\dfrac{3}{2}\left( {{3}^{11}}-1 \right)$.


12. The sum of the first three terms of a G.P. is $\dfrac{\mathbf{39}}{\mathbf{10}}$ and their product is $\mathbf{1}$. Find the common ratio and the terms.

Ans:

Suppose that the first three terms of the geometric progression are $\dfrac{a}{r},\,\,a,\,\,ar$.

Now, by the given conditions,

$\dfrac{a}{r}+a+ar=\dfrac{39}{10}$                                        …… (i)

$\left( \dfrac{a}{r} \right)\cdot \left( a \right)\cdot \left( ar \right)=1$                                    …… (ii)

Simplifying the equation (ii) gives

${{a}^{3}}=1$

$\Rightarrow a=1$, neglecting the imaginary roots.

Thus, replacing $a$ by $1$ in the equation (i) gives

$\dfrac{1}{r}+1+r=\dfrac{39}{10}$

$\Rightarrow 1+r+{{r}^{2}}=\dfrac{39}{10}r$

$\Rightarrow 10+10r+10{{r}^{2}}-39r=0$

$\Rightarrow 10{{r}^{2}}-29r+10=0$

$\Rightarrow 10{{r}^{2}}-25r-4r+10=0$

$\Rightarrow \left( 5r-2 \right)\left( 2r-5 \right)=0$

$\Rightarrow r=\dfrac{2}{5}$ or $\dfrac{5}{2}$.

Hence, $\dfrac{5}{2},$ $1$, and $\dfrac{2}{5}$ are the three terms of the geometric progression.


13. How many terms of G.P. $\mathbf{3},\,{{\mathbf{3}}^{\mathbf{2}}},\,{{\mathbf{3}}^{\mathbf{3}}},...$ are needed to give the sum $\mathbf{120}$.

Ans:

It is provided that the terms $\text{3,}\,{{\text{3}}^{\text{2}}}\text{,}\,{{\text{3}}^{\text{3}}}\text{,}...$ are geometric progression with the first term $a=3$ and the common ratio $r=3$.

Suppose that to get the sum of the G.P. as $120$, $n$ terms are needed to be considered.

So, by the formula, sum of $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$.

Therefore,

$\begin{align}  & \dfrac{3\left( {{3}^{n}}-1 \right)}{3-1}=120 \\  & \Rightarrow {{3}^{n}}-1=120\times \dfrac{2}{3} \\  & \Rightarrow {{3}^{n}}-1=80 \\  & \Rightarrow {{3}^{n}}=81 \\  & \Rightarrow {{3}^{n}}={{3}^{4}} \\ \end{align}$

$\Rightarrow n=4$.

Hence, to get the sum of $\text{3,}\,{{\text{3}}^{\text{2}}}\text{,}\,{{\text{3}}^{\text{3}}}\text{,}...$ as $120$, $4$ terms are needed to be considered.


14. The sum of the first three terms of a G.P. is $\mathbf{16}$ and the sum of the next three terms is $\mathbf{128}$. Determine the first term, the common ratio and the sum of $\mathbf{n}$ terms of the G.P.

Ans:

Suppose that the first six terms of the given geometric progression are

$a,\,ar,\,a{{r}^{2}},\,a{{r}^{3}},\,a{{r}^{4}},\,a{{r}^{5}}$.

Then, by the condition provided to us,

$a+ar+a{{r}^{2}}=16$              

 $\Rightarrow a\left( 1+r+{{r}^{3}} \right)=16$                                           …… (i)

and $a{{r}^{3}}+a{{r}^{4}}+a{{r}^{5}}=128$

$\Rightarrow a{{r}^{3}}\left( 1+r+{{r}^{2}} \right)=128$                                       …… (ii)

Now, divide the equation (ii) by the equation (i). Then, it gives

$\dfrac{a{{r}^{3}}\left( 1+r+{{r}^{2}} \right)}{a\left( 1+r+{{r}^{2}} \right)}=\dfrac{128}{16}$

$\begin{align}   & \Rightarrow {{r}^{3}}=8 \\  & \Rightarrow {{r}^{3}}={{2}^{3}} \\ \end{align}$

$\Rightarrow r=2$                                                            …… (iii)

Therefore, the equation (i) and (iii) together implies

$a\left( 1+2+{{2}^{2}} \right)=16$

$\begin{align}   & \Rightarrow a\times 7=16 \\  & \Rightarrow a=\dfrac{16}{7} \\ \end{align}$

Hence, the sum of $n$ terms of the G.P. is given by

${{S}_{n}}=\dfrac{a\left( {{r}^{n}}-1 \right)}{r-1}$

$=\dfrac{16}{7}\dfrac{\left( {{2}^{n}}-1 \right)}{2-1}$

$=\dfrac{16}{7}\left( {{2}^{n}}-1 \right)$.


15. Given a G.P. with $\mathbf{a}=\mathbf{729}$ and the ${{\mathbf{7}}^{\mathbf{th}}}$ term $\mathbf{64}$, determine ${{\mathbf{S}}_{\mathbf{7}}}$.

Ans:

The first term of the G.P. is $a=729$.

Suppose that $r$ is the common ratio of the geometric progression.

Therefore, by the formula, ${{n}^{th}}$ term of the sequence in G.P.,

${{a}_{n}}=a{{r}^{n-1}}$

So, ${{a}_{7}}=\left( 729 \right){{r}^{7-1}}=729\cdot {{r}^{6}}$

$\begin{align}   & \Rightarrow 64=729{{r}^{6}} \\  & \Rightarrow {{r}^{6}}={{\left( \dfrac{2}{3} \right)}^{6}} \\  & \Rightarrow r=\dfrac{2}{3}. \\ \end{align}$

Thus, by the formula, sum of $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$

Therefore, for $n=7$, we have

${{S}_{7}}=\dfrac{729\left[ 1-{{\left( \dfrac{2}{3} \right)}^{7}} \right]}{1-\dfrac{2}{3}}$

$={{3}^{7}}\times \dfrac{{{3}^{7}}-{{2}^{7}}}{{{3}^{7}}}$

$\begin{align}   & ={{3}^{7}}-{{2}^{7}} \\  & =2187-128 \\ \end{align}$

$=2059$.

Hence, ${{S}_{7}}=2059$.


16. Find a G.P. for which the sum of the first two terms is $-\mathbf{4}$ and the fifth term is $\mathbf{4}$ times the third term.

Ans:

Suppose that $a$ and $r$ respectively are the first term and the common ratio of the geometric progression.

So, by the condition provided to us,

$-4=\dfrac{a\left( 1-{{r}^{2}} \right)}{1-r}$                                                    …… (i)

${{a}_{5}}=4\times {{a}_{3}}$                                                          …… (ii)

Now, we know that, the ${{n}^{th}}$ term of a G.P.,

${{a}_{n}}=a{{r}^{n-1}}$.
Therefore, 

${{a}_{3}}=a{{r}^{3-1}}=a{{r}^{2}}$                                                   …… (iii)

and ${{a}_{5}}=a{{r}^{5-1}}=a{{r}^{4}}$.                                           …… (iv)

Thus, from the equation (ii), (iii), and (iv) we have

$a{{r}^{4}}=4\times a{{r}^{2}}$

$\Rightarrow {{r}^{2}}=4$

$\Rightarrow r=\pm 2$.

Substituting $r=2$ into the equation (i), it gives

$-4=\dfrac{a\left[ 1-{{\left( 2 \right)}^{2}} \right]}{1-2}$

$\Rightarrow -4=\dfrac{a\left( 1-4 \right)}{-1}$

$\Rightarrow -4=3a$

$\Rightarrow a=-\dfrac{4}{3}$.

Also, substituting $r=-2$ into the equation (i), gives

$-4=\dfrac{a\left[ 1-{{\left( -2 \right)}^{2}} \right]}{1-\left( -2 \right)}$

$\Rightarrow -4=\dfrac{a\left( 1-4 \right)}{1+2}$

$\Rightarrow -4=\dfrac{a\left( -3 \right)}{3}$

$\Rightarrow a=4$.

Hence, the G.P. can be of the form $-\dfrac{4}{3},-\dfrac{8}{3},-\dfrac{16}{3},...$ or $4,-8,-16,-32,...$


17. If the ${{\mathbf{4}}^{\mathbf{th}}}$ , $\mathbf{1}{{\mathbf{0}}^{\mathbf{th}}}$, and $\mathbf{1}{{\mathbf{6}}^{\mathbf{th}}}$ terms of a G.P. are $\mathbf{x,y}$ and $\mathbf{z}$, respectively. Prove that $\mathbf{x},\,\mathbf{y},$$\mathbf{z}$ are in G.P.

Ans:

Suppose that $a$ and $r$ respectively are the first term and common ratio of the geometric progression.

Then, by the condition provided to us,

${{a}_{4}}=a{{r}^{3}}=x$                                             …… (i)

${{a}_{10}}=a{{r}^{9}}=y$                                            …… (ii)

${{a}_{16}}=a{{r}^{15}}=z$                                           …… (iii)

Now, divide the equation (ii) by the equation (i). Then, it gives

$\dfrac{y}{x}=\dfrac{a{{r}^{9}}}{a{{r}^{3}}}$

$\Rightarrow \dfrac{y}{x}={{r}^{6}}$                                                  ……(iv)

Again, divide the equation (iii) by the equation (ii). Then, it gives

$\dfrac{z}{y}=\dfrac{a{{r}^{15}}}{a{{r}^{9}}}$

$\Rightarrow \dfrac{z}{y}={{r}^{6}}$                                                  ..,…. (v)

Equating the equations (iv) and (v), we have

$\dfrac{y}{x}=\dfrac{z}{y}$.

Hence, it has been proved that $x,y,z$ are in G.P.


18. Find the sum of $\mathbf{n}$ terms of the sequence $\mathbf{8},\,\mathbf{88},\,\mathbf{888},\,\mathbf{8888},...$.

Ans:

The provided sequence $\text{8,}\,\text{88,}\,\text{888,}\,\text{8888,}...$ is not in a geometric progression (G.P.), but by rearranging and rewriting the terms, it can be converted into a G.P.

The sum of the $n$ terms of the given sequence is given by

${{S}_{n}}=8+88+888+8888+\cdot \cdot \cdot \,\text{to n terms}$

$=\dfrac{8}{9}\left[ 9+99+999+9999+\cdot \cdot \cdot \,\text{to n terms} \right]$

$=\dfrac{8}{9}\left[ \left( 10-1 \right)+\left( {{10}^{2}}-1 \right)+\left( {{10}^{3}}-1 \right)+\left( {{10}^{4}}-1 \right)+\cdot \cdot \cdot \,\,\text{to n terms} \right]$

$=\dfrac{8}{9}\left[ \left( 10+{{10}^{2}}+\cdot \cdot \cdot +\,\,\text{n terms} \right)-\left( 1+1+1+\cdot \cdot \cdot \,\text{n terms} \right) \right]$

$\begin{align}   & =\dfrac{8}{9}\left[ \dfrac{10\left( {{10}^{n}}-1 \right)}{10-1}-n \right] \\  & =\dfrac{80}{81}\left( {{10}^{n}}-1 \right)-\dfrac{8}{9}n. \\  \end{align}$

Hence, the sum of $n$ terms of the sequence $\text{8,}\,\text{88,}\,\text{888,}\,\text{8888,}...$ is $\dfrac{80}{81}\left( {{10}^{n}}-1 \right)-\dfrac{8}{9}n$.


19. Find the sum of the products of the corresponding terms of the sequences $\mathbf{2},\,\mathbf{4},\,\mathbf{8},\,\mathbf{16},\,\mathbf{32}$ and $\mathbf{128},\,\mathbf{32},\,\mathbf{8},\,\mathbf{2},\,\dfrac{\mathbf{1}}{\mathbf{2}}$.

Ans:

The sum of the product of the corresponding terms $\text{2,}\,\text{4,}\,\text{8,}\,\text{16,}\,\text{32}$ and $\text{128,}\,\text{32,}\,\text{8,}\,\text{2,}\,\dfrac{\text{1}}{\text{2}}$, is given by

$=2\times 128+4\times 32+8\times 8+16\times 2+32\times \dfrac{1}{2}$

$=64\left[ 4+2+1+\dfrac{1}{2}+\dfrac{1}{{{2}^{2}}} \right]$.

Now, note that, the terms $4,\,2,\,1,\,\dfrac{1}{2},\,\dfrac{1}{{{2}^{2}}}$ are in geometric progression, with the first term $a=4$ and the common ratio $r=\dfrac{2}{4}=\dfrac{1}{2}$.

So, by the formula, sum of $n$ terms in G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$, $r<1$.

Therefore,

$\begin{align}  & {{S}_{5}}=\dfrac{4\left[ 1-{{\left( \dfrac{1}{2} \right)}^{5}} \right]}{1-\dfrac{1}{2}} \\  & =\dfrac{4\left[ 1-\dfrac{1}{32} \right]}{\dfrac{1}{2}} \\  & =8\left( \dfrac{32-1}{32} \right) \\  & =\dfrac{31}{4}. \\ \end{align}$

Hence, the sum of the products of the corresponding terms of the given sequences is $\dfrac{31}{4}$.


20. Show that the products of the corresponding terms of the sequences $\mathbf{a,}\,\mathbf{ar,}\,\mathbf{a}{{\mathbf{r}}^{\mathbf{2}}}\mathbf{,}...\mathbf{,}\,\mathbf{a}{{\mathbf{r}}^{\mathbf{n-1}}}$ and $\mathbf{A},\,\mathbf{AR},\,\mathbf{A}{{\mathbf{R}}^{\mathbf{2}}},...,\,\mathbf{A}{{\mathbf{R}}^{\mathbf{n}-\mathbf{1}}}$ form a G.P. and find the common ratio.

Ans:

The product of the corresponding terms of the sequences $\text{a,}\,\text{ar,}\,\text{a}{{\text{r}}^{\text{2}}}\text{,}...\text{,}\,\text{a}{{\text{r}}^{\text{n-1}}}$ and $\text{A,}\,\text{AR,}\,\text{A}{{\text{R}}^{\text{2}}}\text{,}...\text{,}\,\text{A}{{\text{R}}^{\text{n-1}}}$ is $aA,\,arAR,\,a{{r}^{2}}A{{R}^{2}},...,a{{r}^{n-1}}A{{R}^{n-1}}$.

Now, we are to be proved that the product is in G.P.

So. $\dfrac{\text{Second term }}{\text{First term}}=\dfrac{arAR}{aA}=rR$                                  …… (i)

Also,

$\dfrac{\text{Third term}}{\text{Second term}}=\dfrac{a{{r}^{2}}A{{R}^{2}}}{arAR}=rR$                                      …… (ii)

Thus, by equating the equations (i) and (ii), we have

$\dfrac{\text{Second term }}{\text{First term}}=\dfrac{\text{Third term}}{\text{Second term}}$$=rR$, the common ratio.

Hence, it has been proved that the product of the corresponding terms of the sequences $\text{a,}\,\text{ar,}\,\text{a}{{\text{r}}^{\text{2}}}\text{,}...\text{,}\,\text{a}{{\text{r}}^{\text{n-1}}}$ and $\text{A,}\,\text{AR,}\,\text{A}{{\text{R}}^{\text{2}}}\text{,}...\text{,}\,\text{A}{{\text{R}}^{\text{n-1}}}$ is in G.P. with the common ratio $rR$.


21. Find four numbers forming a geometric progression in which the third term is greater than the first term by $\mathbf{9}$, and the second term is greater than the ${{\mathbf{4}}^{\mathbf{th}}}$ by $\mathbf{18}$.

Ans:

Suppose that the first term and the common ratio of the geometric progression respectively are $a$ and $r$.

Then the first four terms of the sequence are $a,\,ar,\,a{{r}^{2}},\,a{{r}^{3}}$.

Now, according to the condition provided,

$a{{r}^{2}}=a+9$                                                    …… (i)

$ar=a{{r}^{3}}+18$                                                 …… (ii)

Therefore, rewriting the equations, give

$a\left( {{r}^{2}}-1 \right)=9$                                                …… (iii)

$ar\left( 1-{{r}^{2}} \right)=18$                                              …… (iv)

Now, divide the equation (iv) by the equation (iii). Then, it gives

$\dfrac{ar\left( 1-{{r}^{2}} \right)}{-a\left( 1-{{r}^{2}} \right)}=\dfrac{18}{9}$

$\Rightarrow r=-2$                                                   …… (v)

Now, using the equation (v) into the equation (i) gives

$\begin{align}   & 4a=a+9 \\  & \Rightarrow 3a=9 \\  & \Rightarrow a=3 \\ \end{align}$

Hence, the first four numbers that forms a geometric progression are $3,\,3\left( -2 \right),\,3{{\left( -2 \right)}^{2}},$ and $3{{\left( -2 \right)}^{3}}$, that is $3,\,-6,\,\,12,\,$ and $-24$.


22. If the ${{\mathbf{p}}^{\mathbf{th}}}$ , ${{\mathbf{q}}^{\mathbf{th}}}$ and ${{\mathbf{r}}^{\mathbf{th}}}$ terms of a G.P. are $\mathbf{a},\,\mathbf{b},\,$ and $\mathbf{c}$ respectively. Prove that ${{\mathbf{a}}^{\mathbf{q-r}}}\,{{\mathbf{b}}^{\mathbf{r-p}}}\,{{\mathbf{c}}^{\mathbf{p-q}}}\mathbf{=1}$.

Ans:

First suppose that the first term and the common ratio of the geometric progression are respectively $A$ and $R$.

Then, by the condition provided to us,

$A{{R}^{p-1}}=a$,                                       …… (i)

$A{{R}^{q-1}}=b$,                                       …… (ii)

and $A{{R}^{r-1}}=c$.                                 …… (iii)

Therefore, we have

${{a}^{q-r}}{{b}^{r-p}}{{c}^{p-q}}$

$={{A}^{q-r}}\times {{R}^{\left( p-1 \right)\left( q-r \right)}}\times {{A}^{r-p}}\times {{R}^{\left( q-1 \right)\left( r-p \right)}}\times {{A}^{p-q}}\times {{R}^{\left( r-1 \right)\left( p-q \right)}}$, using the equations (i), (ii) and (iii).

$\begin{align}   & ={{A}^{q-r+r-p+p-q}}\times {{R}^{\left( pr-pr-q+r \right)\left( rq-r+p-pq \right)+\left( pr-p-qr+q \right)}} \\  & ={{A}^{0}}\times {{R}^{0}} \\  & =1. \\ \end{align}$

Hence, it has been proved that, ${{a}^{q-r}}{{b}^{r-p}}{{c}^{p-q}}=1$.


23. If the first and the ${{\mathbf{n}}^{\mathbf{th}}}$ term of a G.P. are $\mathbf{a}$ and $\mathbf{b}$, respectively, and if $\mathbf{P}$ is the product of $\mathbf{n}$ terms, prove that ${{\mathbf{P}}^{\mathbf{2}}}\mathbf{=}{{\left( \mathbf{ab} \right)}^{\mathbf{n}}}$.

Ans:

First suppose that, $r$ is the common ratio of the geometric progression.

Since, $a$ is the first of the G.P., so it takes the form $a,\,ar,\,a{{r}^{2}},a{{r}^{3}},...,a{{r}^{n-1}}$.

Therefore, by the given condition,

$b=a{{r}^{n-1}}$                                              …… (i)

Also, 

$P=$ Product of $n$ terms

$=\left( a \right)\left( ar \right)\left( a{{r}^{2}} \right)\cdot \cdot \cdot \left( a{{r}^{n-1}} \right)$

$=\left( a\times a\times a\times \cdot \cdot \cdot \times a \right)\left( r\times {{r}^{2}}\times \cdot \cdot \cdot \times {{r}^{n-1}} \right)$

$={{a}^{n}}{{r}^{1+2+\cdot \cdot \cdot +\left( n-1 \right)}}$                                      …… (ii)

Now, notice that the numbers $1,2,...,\left( n-1 \right)$ on the power of $r$ are in A.P.

So, the sum of the $n-1$ terms, 

$1+2+\cdot \cdot \cdot +\left( n-1 \right)=\dfrac{n-1}{2}\left[ 2+\left( n-1-1 \right)\times 1 \right]$

$\begin{align}   & =\dfrac{n-1}{2}\left[ 2+n-2 \right] \\  & =\dfrac{n\left( n-1 \right)}{2}. \\ \end{align}$

Thus, from the equation (ii) we have

$P={{a}^{n}}{{r}^{\dfrac{n\left( n-1 \right)}{2}}}$

$\begin{align}   & \Rightarrow {{P}^{2}}={{a}^{2n}}{{r}^{n\left( n-1 \right)}} \\  & ={{\left[ {{a}^{2}}{{r}^{\left( n-1 \right)}} \right]}^{n}} \\  & ={{\left( a\times a{{r}^{n-1}} \right)}^{n}} \\ \end{align}$

$={{\left( ab \right)}^{n}}$, applying the result of equation (i).

Hence, it has been proved that $P={{\left( ab \right)}^{n}}$.


24. Show that the ratio of the sum of first $\mathbf{n}$ terms of a G.P. to the sum of terms from ${{\left( \mathbf{n+1} \right)}^{\mathbf{th}}}$ to ${{\left( \mathbf{2n} \right)}^{\mathbf{th}}}$ term is $\dfrac{\mathbf{1}}{{{\mathbf{r}}^{\mathbf{n}}}}$.

Ans:

Suppose that $a$ and $r$ respectively are the first term and the common ratio of the geometric progression.

Therefore, by the formula, sum of the first $n$ terms of a G.P.,

${{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}$.

Now, note that from ${{\left( \text{n+1} \right)}^{\text{th}}}$ to ${{\left( \text{2n} \right)}^{\text{th}}}$, there are $n$ terms.

So, the sum of the terms between these two terms,

${{{S}'}_{n}}=\dfrac{{{a}_{n+1}}\left( 1-{{r}^{n}} \right)}{1-r}$.

Thus, the ${{\left( n+1 \right)}^{th}}$ term, ${{a}_{n+1}}=a{{r}^{n+1-1}}=a{{r}^{n}}$.

So, the ratio of the sums,

$\begin{align}   & \dfrac{{{S}_{n}}}{{{{{S}'}}_{n}}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{1-r}\times \dfrac{\left( 1-r \right)}{a{{r}^{n}}\left( 1-{{r}^{n}} \right)} \\  & =\dfrac{1}{{{r}^{n}}}. \\ \end{align}$

Hence, it has been shown that the ratio of the sum of the sum of first $\text{n}$ terms of a G.P. to the sum of terms from ${{\left( \text{n+1} \right)}^{\text{th}}}$ to ${{\left( \text{2n} \right)}^{\text{th}}}$ term is $\dfrac{\text{1}}{{{\text{r}}^{\text{n}}}}$. 


25. If $\mathbf{a,}\,\mathbf{b,c}$ and $\mathbf{d}$ are in G.P., then show that

$\left( {{\mathbf{a}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{b}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{c}}^{\mathbf{2}}} \right)\left( {{\mathbf{b}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{c}}^{\mathbf{2}}}\mathbf{+}{{\mathbf{d}}^{\mathbf{2}}} \right)\mathbf{=}{{\left( \mathbf{ab+bc+cd} \right)}^{\mathbf{2}}}$.

Ans:

It is given that the numbers $a,b,c$ and $d$ are in geometric progression (G.P.). So, we have

$\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}$.

That is,

$bc=ad$                                    …… (i)

${{b}^{2}}=ac$                                     …… (ii) 

${{c}^{2}}=bd$                                     …… (iii)

Now, Right-Hand-Side of the statement that needs to be proved,

$={{\left( ab+bc+cd \right)}^{2}}$

$={{\left( ab+ad+cd \right)}^{2}}$, applying the result of the equation (i)

 $={{\left[ ab+d\left( a+c \right) \right]}^{2}}$

$={{a}^{2}}{{b}^{2}}+2abd\left( a+c \right)+{{d}^{2}}{{\left( a+c \right)}^{2}}$

$={{a}^{2}}{{b}^{2}}+2{{a}^{2}}bd+2acbd+{{d}^{2}}\left( {{a}^{2}}+2ac+{{c}^{2}} \right)$

\[={{a}^{2}}{{b}^{2}}+2{{a}^{2}}{{c}^{2}}+2{{b}^{2}}{{c}^{2}}+{{d}^{2}}{{a}^{2}}+2{{d}^{2}}{{b}^{2}}+{{d}^{2}}{{c}^{2}}\], applying the results of equations (i) and (ii).

$={{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}+{{d}^{2}}{{a}^{2}}+{{d}^{2}}{{b}^{2}}+{{d}^{2}}{{b}^{2}}+{{d}^{2}}{{c}^{2}}$

$={{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{a}^{2}}{{d}^{2}}+{{b}^{2}}\cdot {{b}^{2}}+{{b}^{2}}{{c}^{2}}+{{b}^{2}}{{d}^{2}}+{{c}^{2}}{{b}^{2}}+{{c}^{2}}\times {{c}^{2}}+{{c}^{2}}{{d}^{2}}$, applying the results of equations (ii) and (iii) and rewriting the terms.

$={{a}^{2}}\left( {{b}^{2}}+{{c}^{2}}+{{d}^{2}} \right)+{{b}^{2}}\left( {{b}^{2}}+{{c}^{2}}+{{d}^{2}} \right)+{{c}^{2}}\left( {{b}^{2}}+{{c}^{2}}+{{d}^{2}} \right)$

$=\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}} \right)\left( {{b}^{2}}+{{c}^{2}}+{{d}^{2}} \right)$

$=$ Left-Hand-Side of the proof statement.

Hence, it has been proved that

$\left( {{\text{a}}^{\text{2}}}\text{+}{{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}} \right)\left( {{\text{b}}^{\text{2}}}\text{+}{{\text{c}}^{\text{2}}}\text{+}{{\text{d}}^{\text{2}}} \right)\text{=}{{\left( \text{ab+bc+cd} \right)}^{\text{2}}}$.


26. Insert two numbers between $\mathbf{3}$ and $\mathbf{81}$ so that the resulting sequence is G.P.

Ans:

Suppose the two numbers that needed to be inserted between $3$ and $31$ are ${{G}_{1}}$ and ${{G}_{2}}$, so that it forms a G.P. sequence $3,\,{{G}_{1}},\,{{G}_{2}},\,81$.

Also, assume that the first term and the common ratio respectively are $a$ and $r$.

Then, according to the given condition we have

$3{{\left( r \right)}^{4-1}}=81$

$\Rightarrow {{r}^{3}}=27$

$\Rightarrow r=3$, neglecting the imaginary roots.

Therefore, the terms 

${{G}_{1}}=ar=3\times 3=9$ and 

${{G}_{2}}=a{{r}^{2}}=3{{\left( 3 \right)}^{2}}=27$.

Hence, the numbers that need to be inserted between $3$ and $81$ are $9$ and $27$.


27. Find the value of $\mathbf{n}$ so that $\dfrac{{{\mathbf{a}}^{\mathbf{n+1}}}\mathbf{+}{{\mathbf{b}}^{\mathbf{n+1}}}}{{{\mathbf{a}}^{\mathbf{n}}}\mathbf{+}{{\mathbf{b}}^{\mathbf{n}}}}$ may be the geometric mean between $\mathbf{a}$ and $\mathbf{b}$.

Ans:

It is known that the geometric mean between $a$ and $b$ is $\sqrt{ab}$.

Therefore, according to the condition provided,

$\dfrac{{{a}^{n+1}}+{{b}^{n+1}}}{{{a}^{n}}+{{b}^{n}}}=\sqrt{ab}$

$\Rightarrow \dfrac{{{\left( {{a}^{n+1}}+{{b}^{n+1}} \right)}^{2}}}{{{\left( {{a}^{n}}+{{b}^{n}} \right)}^{2}}}=ab$, squaring both sides of the equation.

$\Rightarrow {{a}^{2n+2}}+2{{a}^{n+1}}{{b}^{n+1}}+{{b}^{2n+2}}=\left( ab \right)\left( {{a}^{2n}}+2{{a}^{n}}{{b}^{n}}+{{b}^{2n}} \right)$

$\Rightarrow {{a}^{2n+2}}+2{{a}^{n+1}}{{b}^{n+1}}+{{b}^{2n+2}}={{a}^{2n+1}}b+2{{a}^{n+1}}{{b}^{n+1}}+a{{b}^{2n+1}}$

$\Rightarrow {{a}^{2n+2}}+{{b}^{2n+2}}={{a}^{2n+1}}b+a{{b}^{2n+1}}$

$\Rightarrow {{a}^{2n+2}}-{{a}^{2n+1}}b=a{{b}^{2n+1}}-{{b}^{2n+2}}$.

$\Rightarrow {{a}^{2n+1}}\left( a-b \right)={{b}^{2n+1}}\left( a-b \right)$

$\Rightarrow {{\left( \dfrac{a}{b} \right)}^{2n+1}}=1={{\left( \dfrac{a}{b} \right)}^{0}}$

$\Rightarrow 2n+1=0$

$\Rightarrow n=-\dfrac{1}{2}$.

Hence, for $n=-\dfrac{1}{2}$, $\dfrac{{{\text{a}}^{\text{n-1}}}\text{+}{{\text{b}}^{\text{n-1}}}}{{{\text{a}}^{\text{n}}}\text{+}{{\text{b}}^{\text{n}}}}$ may be the geometric mean between $\text{a}$ and $b$.


28. The sum of two numbers is $\mathbf{6}$ times their geometric mean, show that numbers are in the ratio $\left( \mathbf{3+2}\sqrt{\mathbf{2}} \right)\mathbf{:}\left( \mathbf{3-2}\sqrt{\mathbf{2}} \right)$.

Ans:

Suppose that $a$ and $b$ are the two numbers.

Then, their geometric mean $=\sqrt{ab}$.

So, by the condition provided to us,

$a+b=6\sqrt{ab}$                                                  …… (i)

Squaring both sides of the equation (i), we have

${{\left( a+b \right)}^{2}}=36ab$                                             …… (ii)

Now,

${{\left( a-b \right)}^{2}}={{\left( a+b \right)}^{2}}-4ab$

$=36ab-4ab$, using the equation (ii).

$=32ab$.

$\Rightarrow a-b=\sqrt{32}\sqrt{ab}=4\sqrt{2}\sqrt{ab}$                      …… (iii)

Therefore, adding the equation (i) and (iii), gives

$2a=\left( 6+4\sqrt{2} \right)\sqrt{ab}$

$\Rightarrow a=\left( 3+2\sqrt{2} \right)\sqrt{ab}$                                        …… (iv)

Now, using the equation (iv) into the equation (i), gives

$b=6\sqrt{ab}-\left( 3+2\sqrt{2} \right)\sqrt{ab}$

$\Rightarrow b=\left( 3-2\sqrt{2} \right)\sqrt{ab}$                                         ….. (v)

Thus, dividing the equation (iv) by (v) we have,

$\dfrac{a}{b}=\dfrac{\left( 3+2\sqrt{2} \right)\sqrt{ab}}{\left( 3-2\sqrt{2} \right)\sqrt{ab}}=\dfrac{3+2\sqrt{2}}{3-2\sqrt{2}}$

Hence, the ratio of the numbers is $\left( 3+2\sqrt{2} \right):\left( 3-2\sqrt{2} \right)$.


29. If $\mathbf{A}$ and $\mathbf{G}$ be A.M. and G.M., respectively between two positive numbers, prove that the numbers are $\mathbf{A\pm }\sqrt{\left( \mathbf{A+G} \right)\left( \mathbf{A-G} \right)}$.

Ans:

Suppose that $a$ and $b$ are the two positive numbers.

Then, according to the definition, A.M and G.M of the numbers are

$A=\dfrac{a+b}{2}$                                 …… (i)

$G=\sqrt{ab}$                                  …… (ii)

Rewriting the equations (i) and (ii), gives

$a+b=2A$                               …… (iii)

$ab={{G}^{2}}$                                   …… (iv)

Now, it is known that,

${{\left( a-b \right)}^{2}}={{\left( a+b \right)}^{2}}-4ab$

$={{\left( 2A \right)}^{2}}-4{{G}^{2}}$, using the equations (iii) and (iv).

$\begin{align}   & =4{{A}^{2}}-4{{G}^{2}} \\  & =4\left( {{A}^{2}}-{{G}^{2}} \right) \\ \end{align}$

Therefore,

${{\left( a-b \right)}^{2}}=4\left( A+G \right)\left( A-G \right)$

$\Rightarrow a-b=2\sqrt{\left( A+G \right)\left( A-G \right)}$       …… (v)

Adding the equations (iii) and (v) we have

$2a=2A+2\sqrt{\left( A+G \right)\left( A-G \right)}$

$\Rightarrow a=A+\sqrt{\left( A+G \right)\left( A-G \right)}$        …… (vi)

Thus, the equations (iii) and (vi) gives

$\begin{align}   & b=2A-A-\sqrt{\left( A+G \right)\left( A-G \right)} \\  & =A-\sqrt{\left( A+G \right)\left( A-G \right)}. \\ \end{align}$

Hence, the two positive numbers are $A\pm \sqrt{\left( A+G \right)\left( A-G \right)}$.


30. The number of bacteria in a certain culture doubles every hour. If there were $\mathbf{30}$ bacteria present in the culture originally, how many bacteria will be present at the end of ${{\mathbf{2}}^{\mathbf{nd}}}$ hour, ${{\mathbf{4}}^{\mathbf{th}}}$ hour, and ${{\mathbf{n}}^{\mathbf{th}}}$ hour?

Ans:
Since, the number of bacteria is increasing by two times in each hour, so the problem makes a geometric progression.

It is given that, originally there were $30$ bacteria.

So, the first term of the G.P. is $a=30$ and the common ratio is $r=2$.

Thus, the number of bacteria will present at the end of ${{2}^{nd}}$ hour is given by  ${{a}_{3}}=a{{r}^{3-1}}=\left( 30 \right){{\left( 2 \right)}^{2}}=120$.

The number of bacteria will present at the end of ${{4}^{th}}$ hour is given by

${{a}_{5}}=a{{r}^{5-1}}=\left( 30 \right){{\left( 2 \right)}^{4}}=480$.

Also, the number of bacteria will present at the end of ${{n}^{th}}$ hour is given by ${{a}_{n+1}}=a{{r}^{n}}=\left( 30 \right){{2}^{n}}$.


31. What will Rs. $\mathbf{500}$ amounts to $\mathbf{10}$ years after its deposit in a bank which pays an annual interest rate of $\mathbf{10}%$ compounded annually?

Ans:

The deposited amount to the bank is Rs. $500$.

The amount obtained after the end of the first year 

$=$Rs. $500\left( 1+\dfrac{1}{10} \right)=Rs.\,500\left( 1.1 \right)$.

The amount obtained after the end of the second year,

$=Rs.\,500\left( 1.1 \right)\left( 1.1 \right)$.

The amount obtained after the end of third year,

$=Rs.\,500\left( 1.1 \right)\left( 1.1 \right)\left( 1.1 \right)$ and …so on

Therefore, after the end of $10$ years, the amount $=Rs.\,\,500\left( 1.1 \right)\left( 1.1 \right)...\left( 10\,\,\text{times} \right)$

$=Rs.\,\,500{{\left( 1.1 \right)}^{10}}$.


32. If A.M. and G.M. of roots of a quadratic equation are $\mathbf{8}$ and $\mathbf{5}$, respectively, then obtain the quadratic equation.

Ans:

First suppose that $a$ and $b$ are the roots of the quadratic equation.

Then, A.M. and G.M. of the roots $a$ and $b$ are such that

A.M.$=\dfrac{a+b}{2}$ and

G.M.$=\sqrt{ab}$.

Therefore, by the condition given to us,

$\dfrac{a+b}{2}=8$

$\Rightarrow a+b=16$                                                   …… (i)

and $\sqrt{ab}=5$

$\Rightarrow ab=25$                                                      …… (ii)

Now, we know that, in a quadratic equation of $x$,

${{x}^{2}}-x\left( \text{sum of roots} \right)+\left( \text{product of the roots} \right)=0$

$\Rightarrow {{x}^{2}}-\left( a+b \right)x+\left( ab \right)=0$

$\Rightarrow {{x}^{2}}-16x+25=0$, substituting the values of $a+b$ and $ab$.

Hence, the needed quadratic equation is ${{x}^{2}}-16x+25=0$.


Conclusion

In conclusion, Class 11 Maths Chapter 8 Exercise 8.2 Solutions has provided you with valuable practice in understanding and solving problems related to arithmetic progressions (AP). By working through Class 11 Maths NCERT Solutions Chapter 8 Exercise 8.2, you have learned how to identify arithmetic sequences, find the common difference, and calculate both the nth term and the sum of the first n terms of an AP. These concepts are important for your understanding of sequences and series, and they have various applications in real-world scenarios and advanced mathematical studies.


Class 11 Maths Chapter 8: Exercises Breakdown

Exercise

Number of Questions

Exercise 8.1

14 Questions & Solutions

Miscellaneous Exercise

18 Questions & Solutions


CBSE Class 11 Maths Chapter 8 Other Study Materials


Chapter-Specific NCERT Solutions for Class 11 Maths

Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.


Important Related Links for CBSE Class 11 Maths

FAQs on NCERT Solutions for Class 11 Maths Chapter 8 Sequences And Series Ex 8.2

1. Give a brief description of the chapter.

The Sequences and Series chapter, where you will learn to write any required terms of a sequence, and find any term of the sequence given, find the sum of odd integers of a sequence, find the last term, find the common difference between the sum of the terms, find the ratio of the terms, find the value of m & n. And the topics are Sequences, Series, Arithmetic Progression, Arithmetic mean, Geometric Progression, General term of a Geometric Progression, Sum to n terms of a Geometric Progression, Geometric Mean, Relationship between Arithmetic Mean and Geometric Mean and Sum to n Terms of Special Series.

2. How many questions are there in this exercise?

There are a total of 32 questions in this particular exercise. All the questions in this exercise are almost similar but it differs in finding the terms of the sequence. In questions 1, 2, 3, 4, 5 and 6 you’ll have to find the first five terms of the sequence where you will be given the nth term. In question 7 you’ll have to find the 17th and 24th term of the given sequence. Questions 8, 9 and 10 ask you to find the 7th, 9th and 20th term in the given sequential order. 


Questions 11 to 13 are based on finding the first five terms of the sequence. Questions 14, 20, 21, 24, 30 and 31 are scenario-based questions. Where you’ll have to find the sequence of the term based on the information given. Questions 15, 16, 17, 22, 23, 25 and 26 are based on the geometric progression.

3. How to reduce the fear of Maths with Vedantu’s NCERT Solutions?

Maths is a subject that always is a foster concern for many learners. It is seen as an aversion among the majority of students. This could be because they have never seen this subject in the way it exactly had to be seen. The most reliable way to get rid of this fear is by taking a smart forward step.


Our NCERT Solutions for Class 11 Maths Chapter 8 is one of the most essential study materials for class 11 students. Our maths subject expert teachers have drafted these solutions to the questions with the utmost care in a step-by-step manner to make their preparation for the exam way easier. Students can practice problems from Class 11 Maths Chapter 8 Exercise 8.2 Solution to gain confidence.

4. What are the sequence and series?

This chapter mainly deals with the study of sequence which follows a particular pattern known as progression. You will be reading about arithmetic progression (AP), geometric mean, the relationship between AM and GM, arithmetic mean, geometric mean, special series in forms of the sum to n terms of consecutive natural numbers, cubes of natural numbers and sum to n terms of squares. 


The various numbers that occur in any of the sequences are known as its terms. The terms of a sequence are denoted by:

a1, a2, a3,….,an


If a sequence or format has a finite number of terms then it’s known as a finite sequence. A sequence is termed infinite if it does not have a definite number of terms. The nth term of an AP is given by: 

a + (n-1) d.

5. What is the main focus of Exercise 8.2 in Chapter 8?

The main focus of Exercise 8.2 is to practice and understand arithmetic progressions (AP), including identifying APs, finding the common difference, calculating the nth term, and finding the sum of the first n terms.

6. What is an arithmetic progression (AP) in Class 11 Math Chapter 8 Exercise 8.2?

An arithmetic progression (AP) is a sequence of numbers in which the difference between any two consecutive terms is constant. This constant difference is called the common difference.

7. How do you find the common difference in an AP?

As discussed in NCERT Solutions for Class 11 Maths Chapter 8 Exercise 8.2, The common difference in an AP is found by subtracting any term from the subsequent term. For example, if the sequence is a1,a2,a3,… then the common difference d=a2−a1​.

8. What is the formula for the nth term of an AP in Class 11 Maths Chapter 8 Exercise 8.2?

The formula for the nth term of an AP is an=a+(n−1)xd, where a is the first term, d is the common difference, and n is the term number.

9. How do you find the sum of the first n terms of an AP in Class 11 Maths Chapter 8 Exercise 8.2?

The sum of the first n terms of an AP is given by the formula Sn=n2x(2a+(n−1)xd), where Sn is the sum, a is the first term, d is a common difference, and n is the number of terms.

10. Can understanding Class 11 Maths Chapter 8 Exercise 8.2 Solutions help in real-life situations?

Yes, understanding NCERT Solutions for Class 11 Maths Chapter 8 Exercise 8.2 can help in real-life situations such as financial planning, calculating interest, and analyzing patterns in data.