
You move along $+x$ direction through a distance of $10\,m$ and then move back through a distance of $4\,m$ Repeat It four times during ten minutes, find the:
(A) total
$(i)$ Distance
$(ii)$ Displacement and
(B) average
$(i)$ speed,
$(ii)$ velocity.
Answer
171k+ views
Hint: We come across scenarios where we need to determine which of the two or more things is going faster. The faster of the two, one can easily tell if they are going in the same direction on the same lane. But if their direction of motion is in the opposite direction, then deciding the fastest is difficult.
Formula used:
\[speed\; = \dfrac{Distance}{Time}\]
\[Velocity\; = \dfrac{Displacement}{Time}\]
\[distance\; = \;speed\; \times \;time.\]
Displacement can be calculated by measuring the final distance away from a point, and then subtracting the initial distance.
${\text{displacement = (covered}}\,{\text{distance - starting}}\,{{distance) \times time}}$
Displacement is key when determining velocity
Velocity = displacement/time
Complete step by step solution:
Let covered distance is $10\,m$ ,back through a distance $4\,m$
We find the total distance, displacement,
Then we find Average speed and velocity,
Let take,
$(i)$ ${\text{Distance}} = \left( {10 + 4} \right) \times 10time$
On simplifying, We get,
$\Rightarrow$ ${\text{Distance}} = 14 \times 10$
Multiplying the above equation,
Here,
Distance is $140\,m$
$(ii)$ Displacement
$Displacement = \left( {10 - 4} \right) \times 10$
On simplifying, We get,
$\Rightarrow$ $Displacement = 6 \times 10$
Multiplying the above equation,
Here, Displacement is $60\,\,m$
$(ii)\,average\,Speed = \dfrac{{Dis\tan ce}}{{time}}$
Substituting the given value in above equation,
We get, $Average\,speed = \dfrac{{140}}{{10\min }}$
We know that one minute is equal to sixty seconds,
Here, $Average\,speed = \dfrac{{140}}{{10 \times 60}}$
Then, performing the dividing operation,
Cancel the specific numbers,
We get, \[Average\,speed = \dfrac{{14}}{{0.1}}m/s\]
$(ii)$ $Average\,velocity = \dfrac{{Displacement}}{{time}}$
Substituting the given value,
\[Average\,velocity = \dfrac{{60}}{{10 \times 60}}\]
On simplifying, We get,
$\Rightarrow$ $0.1\,m/s$
Thus, the Average velocity is $0.1\,m/s$
Hence, The total Distance is $140\,m$
The total Displacement is $60\,\,m$
Average speed is \[\dfrac{{14}}{{0.1}}m/s\]
Average velocity is $0.1\,m/s$.
Note: For most of us, speed and velocity can be a little confusing. This speed gives us an idea of how quickly an object moves, whereas speed not only tells us its speed but also tells us the direction in which the body moves. We can define velocity as a function of the distance traveled, while velocity is a displacement function.
Formula used:
\[speed\; = \dfrac{Distance}{Time}\]
\[Velocity\; = \dfrac{Displacement}{Time}\]
\[distance\; = \;speed\; \times \;time.\]
Displacement can be calculated by measuring the final distance away from a point, and then subtracting the initial distance.
${\text{displacement = (covered}}\,{\text{distance - starting}}\,{{distance) \times time}}$
Displacement is key when determining velocity
Velocity = displacement/time
Complete step by step solution:
Let covered distance is $10\,m$ ,back through a distance $4\,m$
We find the total distance, displacement,
Then we find Average speed and velocity,
Let take,
$(i)$ ${\text{Distance}} = \left( {10 + 4} \right) \times 10time$
On simplifying, We get,
$\Rightarrow$ ${\text{Distance}} = 14 \times 10$
Multiplying the above equation,
Here,
Distance is $140\,m$
$(ii)$ Displacement
$Displacement = \left( {10 - 4} \right) \times 10$
On simplifying, We get,
$\Rightarrow$ $Displacement = 6 \times 10$
Multiplying the above equation,
Here, Displacement is $60\,\,m$
$(ii)\,average\,Speed = \dfrac{{Dis\tan ce}}{{time}}$
Substituting the given value in above equation,
We get, $Average\,speed = \dfrac{{140}}{{10\min }}$
We know that one minute is equal to sixty seconds,
Here, $Average\,speed = \dfrac{{140}}{{10 \times 60}}$
Then, performing the dividing operation,
Cancel the specific numbers,
We get, \[Average\,speed = \dfrac{{14}}{{0.1}}m/s\]
$(ii)$ $Average\,velocity = \dfrac{{Displacement}}{{time}}$
Substituting the given value,
\[Average\,velocity = \dfrac{{60}}{{10 \times 60}}\]
On simplifying, We get,
$\Rightarrow$ $0.1\,m/s$
Thus, the Average velocity is $0.1\,m/s$
Hence, The total Distance is $140\,m$
The total Displacement is $60\,\,m$
Average speed is \[\dfrac{{14}}{{0.1}}m/s\]
Average velocity is $0.1\,m/s$.
Note: For most of us, speed and velocity can be a little confusing. This speed gives us an idea of how quickly an object moves, whereas speed not only tells us its speed but also tells us the direction in which the body moves. We can define velocity as a function of the distance traveled, while velocity is a displacement function.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solution for Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solution for Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solution for Class 11 Physics Chapter 3 Motion In A Plane - 2025-26
