
Wires A and B have identical lengths and have circular cross-sections. The radius of A is twice the radius of B i.e., \[{r_A} = 2{r_B}\]. For a given temperature difference between the two ends, both wires conduct heat at the same rate. Find the relation between the thermal conductivities.
A. \[{K_A} = 4{K_B}\]
B. \[{K_A} = 2{K_B}\]
C. \[{K_A} = \dfrac{{{K_B}}}{2}\]
D. \[{K_A} = \dfrac{{{K_B}}}{4}\]
Answer
233.1k+ views
Hint: In order to solve this problem we need to understand the thermal conductivity. The rate at which heat is transferred by conduction through a unit cross-section area of a material is known as thermal conductivity.
Formula Used:
To find the rate of flow of heat the formula is,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta T}}{L}\]
Where, A is cross-sectional area, \[\Delta T\] is the temperature difference between two ends, L is the length of the cylinder and K is the thermal conductivity.
Complete step by step solution:
We have two wires A and B having identical lengths and circular cross-sections. The radius of A is twice the radius of B i.e., \[{r_A} = 2{r_B}\]. For a given temperature difference both wires conduct heat at the same rate. We need to find the relation between the thermal conductivities. To find the rate of flow of heat the formula is,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta T}}{L}\]
From this, the value of K can be written as,
\[K = \dfrac{{QL}}{{t\Delta TA}}\]
From this, we can say that the relation between thermal conductivity and the area is,
\[K = \left( {\dfrac{{QL}}{{t\Delta T}}} \right)\dfrac{1}{A}\]
\[\Rightarrow K \propto \dfrac{1}{A}\]
Since we have two wires A and B then,
\[{K_A} \propto \dfrac{1}{{{A_1}}}\]and \[{K_B} \propto \dfrac{1}{{{A_2}}}\]
\[\Rightarrow \dfrac{{{K_A}}}{{{K_B}}} = \dfrac{{{A_2}}}{{{A_1}}}\]
Here, area \[A = \pi {r^2}\] then,
\[\dfrac{{{K_A}}}{{{K_B}}} = \dfrac{{\pi {r_B}^2}}{{\pi {r_A}^2}}\]
From data, \[{r_A} = 2{r_B}\]
Substitute the value in the above equation we get,
\[\dfrac{{{K_A}}}{{{K_B}}} = \dfrac{{{r_B}^2}}{{{{\left( {2{r_B}} \right)}^2}}}\]
\[\Rightarrow \dfrac{{{K_A}}}{{{K_B}}} = \dfrac{1}{4}\]
\[\therefore {K_A} = \dfrac{{{K_B}}}{4}\]
Therefore, the relation between the thermal conductivities is \[{K_A} = \dfrac{{{K_B}}}{4}\].
Hence, option D is the correct answer.
Note:The materials which have a high thermal conductivity are used in heat sinks whereas materials with low values are used as thermal insulators. In order to measure the thermal conductivities of materials there exist several methods, which are broadly classified into two types of techniques one is transient and other is steady-state techniques.
Formula Used:
To find the rate of flow of heat the formula is,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta T}}{L}\]
Where, A is cross-sectional area, \[\Delta T\] is the temperature difference between two ends, L is the length of the cylinder and K is the thermal conductivity.
Complete step by step solution:
We have two wires A and B having identical lengths and circular cross-sections. The radius of A is twice the radius of B i.e., \[{r_A} = 2{r_B}\]. For a given temperature difference both wires conduct heat at the same rate. We need to find the relation between the thermal conductivities. To find the rate of flow of heat the formula is,
\[\dfrac{Q}{t} = KA\dfrac{{\Delta T}}{L}\]
From this, the value of K can be written as,
\[K = \dfrac{{QL}}{{t\Delta TA}}\]
From this, we can say that the relation between thermal conductivity and the area is,
\[K = \left( {\dfrac{{QL}}{{t\Delta T}}} \right)\dfrac{1}{A}\]
\[\Rightarrow K \propto \dfrac{1}{A}\]
Since we have two wires A and B then,
\[{K_A} \propto \dfrac{1}{{{A_1}}}\]and \[{K_B} \propto \dfrac{1}{{{A_2}}}\]
\[\Rightarrow \dfrac{{{K_A}}}{{{K_B}}} = \dfrac{{{A_2}}}{{{A_1}}}\]
Here, area \[A = \pi {r^2}\] then,
\[\dfrac{{{K_A}}}{{{K_B}}} = \dfrac{{\pi {r_B}^2}}{{\pi {r_A}^2}}\]
From data, \[{r_A} = 2{r_B}\]
Substitute the value in the above equation we get,
\[\dfrac{{{K_A}}}{{{K_B}}} = \dfrac{{{r_B}^2}}{{{{\left( {2{r_B}} \right)}^2}}}\]
\[\Rightarrow \dfrac{{{K_A}}}{{{K_B}}} = \dfrac{1}{4}\]
\[\therefore {K_A} = \dfrac{{{K_B}}}{4}\]
Therefore, the relation between the thermal conductivities is \[{K_A} = \dfrac{{{K_B}}}{4}\].
Hence, option D is the correct answer.
Note:The materials which have a high thermal conductivity are used in heat sinks whereas materials with low values are used as thermal insulators. In order to measure the thermal conductivities of materials there exist several methods, which are broadly classified into two types of techniques one is transient and other is steady-state techniques.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties of Fluids (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

NCERT Solutions For Class 11 Physics Chapter 4 Law of Motion (2025-26)

Class 11 JEE Main Physics Mock Test 2025

Inductive Effect and Its Role in Acidic Strength

