
Which of the following reactions is used to prepare isobutane?
(A) Wurtz reaction of C2H5Br.
(B) Hydrolysis of n-butylmagnesium iodide.
(C) Reduction of propanol with red phosphorus and HI.
(D) Decarboxylation of 3-methylbutanoic acid.
Answer
221.1k+ views
Hint: ‘But’ means four carbon structures. ‘ane’ means all the carbon is connected through a single bond. Isobutane or i-butane is an isomer of butane having chemical formula \[CH{\left( {C{H_3}} \right)_3}\]. It is also called \[2\]-methyl butane.
Complete Step by Step Answer:
Option A: wurtz reaction is an organic reaction used for synthesis of alkanes in presence of sodium metal. It can be represented by general reaction as \[R - X + 2Na + R - X \to R - R + 2NaX\]
Thus, on undergoing a wurtz reaction of ethyl bromide, n-butane is obtained as a product along with sodium bromide.
\[{C_2}{H_5}Br{\text{ }} + {\text{ }}2Na{\text{ }} + {\text{ }}{C_2}{H_5}Br{\text{ }} \to {\text{ }}{C_4}{H_{10}}{\text{ }} + {\text{ }}2NaBr\]
Option B: Hydrolysis refers to reaction with water. Thus, when n-butyl magnesium iodide is treated with water, it results in formation of n butane.
\[C{H_3}C{H_2}C{H_2}C{H_2}MgI + {H_2}0 \to C{H_3}C{H_2}C{H_2}C{H_3} + Mg(OH)I\]
Option C: Reduction means addition of hydrogen or removal of oxygen. Thus, reduction of alcohol with help of reducing agents leads to formation of alkane. Thus, on reaction of propanol with \[HI\] and red phosphorus, normal butane or n-butane is formed and not isobutane.
\[C{H_3}C{H_2}C{H_2}C{H_2}OH\xrightarrow{{HI}}C{H_3}C{H_2}C{H_2}C{H_3}\]
Thus, in all the above reactions isobutene is not formed. Hence option A, B, C are incorrect.
Option D: decarboxylation means removal of carbon dioxide as a byproduct. It is usually from a carboxylic functional group.
\[C{H_3} - CH(C{H_3}) - C{H_2}COOH\xrightarrow{{NaOH,CaO}}C{H_3} - CH(C{H_3}) - C{H_3} + C{O_2}\]
Thus, isobutane is formed as a product during decarboxylation of \[3\]-methylbutanoic acid.
Hence, the correct answer is option (D).
Note: If we had used butanoic acid instead of using \[3\]-methyl butanoic acid then the product would be normal butane or simply butane instead of iso-butane. And if we had used \[2\]-methyl propyl bromide in option A then the product obtained would be iso butane. Thus, on changing the reactant we can get the desired product.
Complete Step by Step Answer:
Option A: wurtz reaction is an organic reaction used for synthesis of alkanes in presence of sodium metal. It can be represented by general reaction as \[R - X + 2Na + R - X \to R - R + 2NaX\]
Thus, on undergoing a wurtz reaction of ethyl bromide, n-butane is obtained as a product along with sodium bromide.
\[{C_2}{H_5}Br{\text{ }} + {\text{ }}2Na{\text{ }} + {\text{ }}{C_2}{H_5}Br{\text{ }} \to {\text{ }}{C_4}{H_{10}}{\text{ }} + {\text{ }}2NaBr\]
Option B: Hydrolysis refers to reaction with water. Thus, when n-butyl magnesium iodide is treated with water, it results in formation of n butane.
\[C{H_3}C{H_2}C{H_2}C{H_2}MgI + {H_2}0 \to C{H_3}C{H_2}C{H_2}C{H_3} + Mg(OH)I\]
Option C: Reduction means addition of hydrogen or removal of oxygen. Thus, reduction of alcohol with help of reducing agents leads to formation of alkane. Thus, on reaction of propanol with \[HI\] and red phosphorus, normal butane or n-butane is formed and not isobutane.
\[C{H_3}C{H_2}C{H_2}C{H_2}OH\xrightarrow{{HI}}C{H_3}C{H_2}C{H_2}C{H_3}\]
Thus, in all the above reactions isobutene is not formed. Hence option A, B, C are incorrect.
Option D: decarboxylation means removal of carbon dioxide as a byproduct. It is usually from a carboxylic functional group.
\[C{H_3} - CH(C{H_3}) - C{H_2}COOH\xrightarrow{{NaOH,CaO}}C{H_3} - CH(C{H_3}) - C{H_3} + C{O_2}\]
Thus, isobutane is formed as a product during decarboxylation of \[3\]-methylbutanoic acid.
Hence, the correct answer is option (D).
Note: If we had used butanoic acid instead of using \[3\]-methyl butanoic acid then the product would be normal butane or simply butane instead of iso-butane. And if we had used \[2\]-methyl propyl bromide in option A then the product obtained would be iso butane. Thus, on changing the reactant we can get the desired product.
Recently Updated Pages
Difference Between Alcohol and Phenol: Structure, Tests & Uses

Classification of Drugs in Chemistry: Types, Examples & Exam Guide

Class 12 Chemistry Mock Test Series for JEE Main – Free Online Practice

Is PPh3 a strong ligand class 12 chemistry JEE_Main

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

The D and F Block Elements Class 12 Chemistry Chapter 4 CBSE Notes - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

