
Which of the following is true for the function \[f\left( x \right) = \left( {x + 2} \right){e^{ - x}}\]?
A. Decreasing for all \[x\]
B. Decreasing in \[\left( { - \infty , - 1} \right)\] and increasing in \[\left( { - 1,\infty } \right)\]
C. Increasing for all \[x\]
D. Decreasing in \[\left( { - 1,\infty } \right)\] and increasing in \[\left( { - \infty , - 1} \right)\]
Answer
162.9k+ views
Hint: To check a function increasing or decreasing, first-order derivative test is used. Find the differentiation of the given function and equate it with zero to find the critical points. Use the concept that a function is increasing in the interval on which the first-order derivative of the function is positive. Otherwise, it is decreasing.
Formula used
Quotient Rule: If \[f\left( x \right)\] and \[g\left( x \right)\] be two functions of \[x\] then the differentiation of the function \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is \[\dfrac{d}{{dx}}\left\{ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} - f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}}}{{{{\left\{ {g\left( x \right)} \right\}}^2}}}\], provided \[g\left( x \right) \ne 0\]
\[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
\[\dfrac{d}{{dx}}\left( c \right) = 0\], where \[c\] is a constant.
Complete step by step solution
The given function is \[f\left( x \right) = \left( {x + 2} \right){e^{ - x}}\]
Simplifying the given function and we get
\[ \Rightarrow f\left( x \right) = \left( {x + 2} \right) \times \dfrac{1}{{{e^x}}}\]
\[ \Rightarrow f\left( x \right) = \dfrac{{x + 2}}{{{e^x}}}\] ………….(1)
Differentiating the function (1) with respect to \[x\], we get
\[f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {x + 2} \right) - \left( {x + 2} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Now, \[\dfrac{d}{{dx}}\left( {x + 2} \right) = \dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 2 \right) = 1 - 0 = 1\]
and \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
So, \[f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left( 1 \right) - \left( {x + 2} \right)\left( {{e^x}} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Simplify the expression.
Take the term \[\left( {{e^x}} \right)\] as common from the numerator.
\[ \Rightarrow f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left\{ {1 - \left( {x + 2} \right)} \right\}}}{{{{\left( {{e^x}} \right)}^2}}}\]
\[ \Rightarrow f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left( {1 - x - 2} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Cancel out the term \[{e^x}\] from the numerator.
\[ \Rightarrow f'\left( x \right) = \dfrac{{ - x - 1}}{{{e^x}}}\]
\[ \Rightarrow f'\left( x \right) = - \left( {x + 1} \right){e^{ - x}}\]
Now \[\dfrac{{dy}}{{dx}} = 0\] gives \[x = - 1\]
For the interval \[\left( { - \infty , - 1} \right)\], \[f'(x)\] gives positive values. i.e., \[f'(x) > 0\]
For the interval \[\left( { - 1,\infty } \right)\], \[f'(x)\] gives negative values. i.e., \[f'(x) < 0\]
Therefore, the given function \[f\left( x \right) = \left( {x + 2} \right){e^{ - x}}\] increasing in the interval \[\left( { - \infty , - 1} \right)\] and decreasing in the interval \[\left( { - 1,\infty } \right)\] .
Hence option D is correct.
Note: Many students get confused about the condition for a function to be increasing and decreasing. They should remember that a function is increasing if the first order derivative of the function is positive for all real values of \[x\] but if the first order derivative of a function is negative for all real values of \[x\] then the function is decreasing function.
Formula used
Quotient Rule: If \[f\left( x \right)\] and \[g\left( x \right)\] be two functions of \[x\] then the differentiation of the function \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is \[\dfrac{d}{{dx}}\left\{ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} - f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}}}{{{{\left\{ {g\left( x \right)} \right\}}^2}}}\], provided \[g\left( x \right) \ne 0\]
\[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
\[\dfrac{d}{{dx}}\left( c \right) = 0\], where \[c\] is a constant.
Complete step by step solution
The given function is \[f\left( x \right) = \left( {x + 2} \right){e^{ - x}}\]
Simplifying the given function and we get
\[ \Rightarrow f\left( x \right) = \left( {x + 2} \right) \times \dfrac{1}{{{e^x}}}\]
\[ \Rightarrow f\left( x \right) = \dfrac{{x + 2}}{{{e^x}}}\] ………….(1)
Differentiating the function (1) with respect to \[x\], we get
\[f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {x + 2} \right) - \left( {x + 2} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Now, \[\dfrac{d}{{dx}}\left( {x + 2} \right) = \dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 2 \right) = 1 - 0 = 1\]
and \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
So, \[f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left( 1 \right) - \left( {x + 2} \right)\left( {{e^x}} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Simplify the expression.
Take the term \[\left( {{e^x}} \right)\] as common from the numerator.
\[ \Rightarrow f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left\{ {1 - \left( {x + 2} \right)} \right\}}}{{{{\left( {{e^x}} \right)}^2}}}\]
\[ \Rightarrow f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left( {1 - x - 2} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Cancel out the term \[{e^x}\] from the numerator.
\[ \Rightarrow f'\left( x \right) = \dfrac{{ - x - 1}}{{{e^x}}}\]
\[ \Rightarrow f'\left( x \right) = - \left( {x + 1} \right){e^{ - x}}\]
Now \[\dfrac{{dy}}{{dx}} = 0\] gives \[x = - 1\]
For the interval \[\left( { - \infty , - 1} \right)\], \[f'(x)\] gives positive values. i.e., \[f'(x) > 0\]
For the interval \[\left( { - 1,\infty } \right)\], \[f'(x)\] gives negative values. i.e., \[f'(x) < 0\]
Therefore, the given function \[f\left( x \right) = \left( {x + 2} \right){e^{ - x}}\] increasing in the interval \[\left( { - \infty , - 1} \right)\] and decreasing in the interval \[\left( { - 1,\infty } \right)\] .
Hence option D is correct.
Note: Many students get confused about the condition for a function to be increasing and decreasing. They should remember that a function is increasing if the first order derivative of the function is positive for all real values of \[x\] but if the first order derivative of a function is negative for all real values of \[x\] then the function is decreasing function.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
