
Which of the following is true for the function \[f\left( x \right) = \left( {x + 2} \right){e^{ - x}}\]?
A. Decreasing for all \[x\]
B. Decreasing in \[\left( { - \infty , - 1} \right)\] and increasing in \[\left( { - 1,\infty } \right)\]
C. Increasing for all \[x\]
D. Decreasing in \[\left( { - 1,\infty } \right)\] and increasing in \[\left( { - \infty , - 1} \right)\]
Answer
216k+ views
Hint: To check a function increasing or decreasing, first-order derivative test is used. Find the differentiation of the given function and equate it with zero to find the critical points. Use the concept that a function is increasing in the interval on which the first-order derivative of the function is positive. Otherwise, it is decreasing.
Formula used
Quotient Rule: If \[f\left( x \right)\] and \[g\left( x \right)\] be two functions of \[x\] then the differentiation of the function \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is \[\dfrac{d}{{dx}}\left\{ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} - f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}}}{{{{\left\{ {g\left( x \right)} \right\}}^2}}}\], provided \[g\left( x \right) \ne 0\]
\[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
\[\dfrac{d}{{dx}}\left( c \right) = 0\], where \[c\] is a constant.
Complete step by step solution
The given function is \[f\left( x \right) = \left( {x + 2} \right){e^{ - x}}\]
Simplifying the given function and we get
\[ \Rightarrow f\left( x \right) = \left( {x + 2} \right) \times \dfrac{1}{{{e^x}}}\]
\[ \Rightarrow f\left( x \right) = \dfrac{{x + 2}}{{{e^x}}}\] ………….(1)
Differentiating the function (1) with respect to \[x\], we get
\[f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {x + 2} \right) - \left( {x + 2} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Now, \[\dfrac{d}{{dx}}\left( {x + 2} \right) = \dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 2 \right) = 1 - 0 = 1\]
and \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
So, \[f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left( 1 \right) - \left( {x + 2} \right)\left( {{e^x}} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Simplify the expression.
Take the term \[\left( {{e^x}} \right)\] as common from the numerator.
\[ \Rightarrow f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left\{ {1 - \left( {x + 2} \right)} \right\}}}{{{{\left( {{e^x}} \right)}^2}}}\]
\[ \Rightarrow f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left( {1 - x - 2} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Cancel out the term \[{e^x}\] from the numerator.
\[ \Rightarrow f'\left( x \right) = \dfrac{{ - x - 1}}{{{e^x}}}\]
\[ \Rightarrow f'\left( x \right) = - \left( {x + 1} \right){e^{ - x}}\]
Now \[\dfrac{{dy}}{{dx}} = 0\] gives \[x = - 1\]
For the interval \[\left( { - \infty , - 1} \right)\], \[f'(x)\] gives positive values. i.e., \[f'(x) > 0\]
For the interval \[\left( { - 1,\infty } \right)\], \[f'(x)\] gives negative values. i.e., \[f'(x) < 0\]
Therefore, the given function \[f\left( x \right) = \left( {x + 2} \right){e^{ - x}}\] increasing in the interval \[\left( { - \infty , - 1} \right)\] and decreasing in the interval \[\left( { - 1,\infty } \right)\] .
Hence option D is correct.
Note: Many students get confused about the condition for a function to be increasing and decreasing. They should remember that a function is increasing if the first order derivative of the function is positive for all real values of \[x\] but if the first order derivative of a function is negative for all real values of \[x\] then the function is decreasing function.
Formula used
Quotient Rule: If \[f\left( x \right)\] and \[g\left( x \right)\] be two functions of \[x\] then the differentiation of the function \[\dfrac{{f\left( x \right)}}{{g\left( x \right)}}\] is \[\dfrac{d}{{dx}}\left\{ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right\} = \dfrac{{g\left( x \right)\dfrac{d}{{dx}}\left\{ {f\left( x \right)} \right\} - f\left( x \right)\dfrac{d}{{dx}}\left\{ {g\left( x \right)} \right\}}}{{{{\left\{ {g\left( x \right)} \right\}}^2}}}\], provided \[g\left( x \right) \ne 0\]
\[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
\[\dfrac{d}{{dx}}\left( c \right) = 0\], where \[c\] is a constant.
Complete step by step solution
The given function is \[f\left( x \right) = \left( {x + 2} \right){e^{ - x}}\]
Simplifying the given function and we get
\[ \Rightarrow f\left( x \right) = \left( {x + 2} \right) \times \dfrac{1}{{{e^x}}}\]
\[ \Rightarrow f\left( x \right) = \dfrac{{x + 2}}{{{e^x}}}\] ………….(1)
Differentiating the function (1) with respect to \[x\], we get
\[f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\dfrac{d}{{dx}}\left( {x + 2} \right) - \left( {x + 2} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Now, \[\dfrac{d}{{dx}}\left( {x + 2} \right) = \dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( 2 \right) = 1 - 0 = 1\]
and \[\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}\]
So, \[f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left( 1 \right) - \left( {x + 2} \right)\left( {{e^x}} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Simplify the expression.
Take the term \[\left( {{e^x}} \right)\] as common from the numerator.
\[ \Rightarrow f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left\{ {1 - \left( {x + 2} \right)} \right\}}}{{{{\left( {{e^x}} \right)}^2}}}\]
\[ \Rightarrow f'\left( x \right) = \dfrac{{\left( {{e^x}} \right)\left( {1 - x - 2} \right)}}{{{{\left( {{e^x}} \right)}^2}}}\]
Cancel out the term \[{e^x}\] from the numerator.
\[ \Rightarrow f'\left( x \right) = \dfrac{{ - x - 1}}{{{e^x}}}\]
\[ \Rightarrow f'\left( x \right) = - \left( {x + 1} \right){e^{ - x}}\]
Now \[\dfrac{{dy}}{{dx}} = 0\] gives \[x = - 1\]
For the interval \[\left( { - \infty , - 1} \right)\], \[f'(x)\] gives positive values. i.e., \[f'(x) > 0\]
For the interval \[\left( { - 1,\infty } \right)\], \[f'(x)\] gives negative values. i.e., \[f'(x) < 0\]
Therefore, the given function \[f\left( x \right) = \left( {x + 2} \right){e^{ - x}}\] increasing in the interval \[\left( { - \infty , - 1} \right)\] and decreasing in the interval \[\left( { - 1,\infty } \right)\] .
Hence option D is correct.
Note: Many students get confused about the condition for a function to be increasing and decreasing. They should remember that a function is increasing if the first order derivative of the function is positive for all real values of \[x\] but if the first order derivative of a function is negative for all real values of \[x\] then the function is decreasing function.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

