
Which of the following is true for \[c\cos \left( {A - \alpha } \right) + a\cos \left( {C + \alpha } \right)\] in \[\Delta ABC\]?
A. \[a\cos \alpha \]
B. \[b\cos \alpha \]
C. \[c\cos \alpha \]
D. \[2b\cos \alpha \]
Answer
163.5k+ views
Hint: First we will apply the sum and difference formula of cos. Then use the cosine law and sine law to simplify the given expression.
Formula used:
Sine Law:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Trigonometry identity:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\]
Complete step by step solution:
Given expression is
\[c\cos \left( {A - \alpha } \right) + a\cos \left( {C + \alpha } \right)\]
Applying sum and difference formula of cosine in the above expression
\[ = c\cos A\cos \alpha + c\sin A\sin \alpha + a\cos C\cos \alpha - a\sin C\sin \alpha \]
\[ = c\cos A\cos \alpha + a\cos C\cos \alpha + c\sin A\sin \alpha - a\sin C\sin \alpha \]
Take common \[\cos \alpha \] from first two terms and \[\sin \alpha \] last two terms.
\[ = \cos \alpha \left( {c\cos A + a\cos C} \right) + \sin \alpha \left( {c\sin A - a\sin C} \right)\] ….(i)
Form cosine law we get
\[{a^2} = {b^2} + {c^2} - 2bc\cos A \Rightarrow \cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C \Rightarrow \cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\]
Substitute \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] and \[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\] in (i)
\[ = \cos \alpha \left( {c \cdot \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + a \cdot \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}} \right) + \sin \alpha \left( {c\sin A - a\sin C} \right)\]
\[ = \cos \alpha \left( {\dfrac{{{b^2} + {c^2} - {a^2}}}{{2b}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2b}}} \right) + \sin \alpha \left( {c\sin A - a\sin C} \right)\]
\[ = \cos \alpha \left( {\dfrac{{{b^2} + {c^2} - {a^2} + {a^2} + {b^2} - {c^2}}}{{2b}}} \right) + \sin \alpha \left( {c\sin A - a\sin C} \right)\]
\[ = \cos \alpha \left( {\dfrac{{2{b^2}}}{{2b}}} \right) + \sin \alpha \left( {c\sin A - a\sin C} \right)\]
\[ = b\cos \alpha + \sin \alpha \left( {c\sin A - a\sin C} \right)\]
We know the sine law \[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k\left( {say} \right)\]
Then, \[\sin A = ka\], \[\sin C = kc\]
\[ = b\cos \alpha + \sin \alpha \left( {kac - kac} \right)\]
\[ = b\cos \alpha \]
Hence option B is the correct option.
Note: Some students often confuse with the sum and difference of cos. They often used \[\cos \left( {A - B} \right) = \cos A\cos B - \sin A\sin B\] and \[\cos \left( {A + B} \right) = \cos A\cos B + \sin A\sin B\] which are incorrect formula. The correct formula is \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\] and \[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\].
Formula used:
Sine Law:
\[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}\]
Cosine law:
\[{a^2} = {b^2} + {c^2} - 2bc\cos A\]
\[{b^2} = {a^2} + {c^2} - 2ac\cos B\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C\]
Trigonometry identity:
\[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\]
\[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\]
Complete step by step solution:
Given expression is
\[c\cos \left( {A - \alpha } \right) + a\cos \left( {C + \alpha } \right)\]
Applying sum and difference formula of cosine in the above expression
\[ = c\cos A\cos \alpha + c\sin A\sin \alpha + a\cos C\cos \alpha - a\sin C\sin \alpha \]
\[ = c\cos A\cos \alpha + a\cos C\cos \alpha + c\sin A\sin \alpha - a\sin C\sin \alpha \]
Take common \[\cos \alpha \] from first two terms and \[\sin \alpha \] last two terms.
\[ = \cos \alpha \left( {c\cos A + a\cos C} \right) + \sin \alpha \left( {c\sin A - a\sin C} \right)\] ….(i)
Form cosine law we get
\[{a^2} = {b^2} + {c^2} - 2bc\cos A \Rightarrow \cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
\[{c^2} = {a^2} + {b^2} - 2ab\cos C \Rightarrow \cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\]
Substitute \[\cos A = \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\] and \[\cos C = \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}\] in (i)
\[ = \cos \alpha \left( {c \cdot \dfrac{{{b^2} + {c^2} - {a^2}}}{{2bc}} + a \cdot \dfrac{{{a^2} + {b^2} - {c^2}}}{{2ab}}} \right) + \sin \alpha \left( {c\sin A - a\sin C} \right)\]
\[ = \cos \alpha \left( {\dfrac{{{b^2} + {c^2} - {a^2}}}{{2b}} + \dfrac{{{a^2} + {b^2} - {c^2}}}{{2b}}} \right) + \sin \alpha \left( {c\sin A - a\sin C} \right)\]
\[ = \cos \alpha \left( {\dfrac{{{b^2} + {c^2} - {a^2} + {a^2} + {b^2} - {c^2}}}{{2b}}} \right) + \sin \alpha \left( {c\sin A - a\sin C} \right)\]
\[ = \cos \alpha \left( {\dfrac{{2{b^2}}}{{2b}}} \right) + \sin \alpha \left( {c\sin A - a\sin C} \right)\]
\[ = b\cos \alpha + \sin \alpha \left( {c\sin A - a\sin C} \right)\]
We know the sine law \[\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}} = k\left( {say} \right)\]
Then, \[\sin A = ka\], \[\sin C = kc\]
\[ = b\cos \alpha + \sin \alpha \left( {kac - kac} \right)\]
\[ = b\cos \alpha \]
Hence option B is the correct option.
Note: Some students often confuse with the sum and difference of cos. They often used \[\cos \left( {A - B} \right) = \cos A\cos B - \sin A\sin B\] and \[\cos \left( {A + B} \right) = \cos A\cos B + \sin A\sin B\] which are incorrect formula. The correct formula is \[\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B\] and \[\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
