
Which of the following is the correct order of magnitude of various elastic moduli in materials like aluminium and copper?
(A) Young’s moduli < Shear moduli < Bulk moduli
(B) Bulk moduli < Shear moduli < Young’s moduli
(C) Shear moduli < Young’s moduli < Bulk moduli
(D) Bulk modulus < Young’s moduli < Shear moduli
Answer
131.7k+ views
Hint: In the stress – strain curve, the region which is in elastic limit describes the maximum stress the material will take before deforming permanently. The ratio between stress and strain is the modulus of elasticity. Elastic moduli are of three types – Young’s modulus, Shear modulus and Bulk modulus.
Complete step by step solution:
From the stress – strain curve, the region which is in elastic limit describes the maximum stress the material will take before deforming permanently. This region is important to manufacturing and structural sectors.
The elastic modulus can be defined as the ratio between stress and strain.
There are three types of elastic moduli:
Young’s modulus – Young’s modulus can be defined as the mechanical property to withstand the compression and elongation with respect to its length. It is denoted by $Y$. It quantifies the relationship between stress and strain. It is the measure of mechanical properties of linear elastic solids.
Shear modulus – This modulus can be defined as the ratio between shear stress and shar strain. It can be denoted by $\eta $. The S.I unit of shear modulus is pascals but it is generally expressed in gigapascals.
Bulk modulus – It is used to measure the resistance property of the substance. It describes how resistant to compression the substance is. It is denoted by $K$.
Now, the magnitude of various elastic moduli of copper are –
$
Y = 128 GPa \\
K = 140GPa \\
\eta = 48GPa \\
$
Therefore, for copper, Shear moduli < Young’s moduli < Bulk moduli
Hence, the correct option is (C).
Note: The Young’s modulus can describe the ability of the body to resist deformation on the application of force, so by using the value of Young’s modulus of the material we can also determine the rigidity of the body.
Complete step by step solution:
From the stress – strain curve, the region which is in elastic limit describes the maximum stress the material will take before deforming permanently. This region is important to manufacturing and structural sectors.
The elastic modulus can be defined as the ratio between stress and strain.
There are three types of elastic moduli:
Young’s modulus – Young’s modulus can be defined as the mechanical property to withstand the compression and elongation with respect to its length. It is denoted by $Y$. It quantifies the relationship between stress and strain. It is the measure of mechanical properties of linear elastic solids.
Shear modulus – This modulus can be defined as the ratio between shear stress and shar strain. It can be denoted by $\eta $. The S.I unit of shear modulus is pascals but it is generally expressed in gigapascals.
Bulk modulus – It is used to measure the resistance property of the substance. It describes how resistant to compression the substance is. It is denoted by $K$.
Now, the magnitude of various elastic moduli of copper are –
$
Y = 128 GPa \\
K = 140GPa \\
\eta = 48GPa \\
$
Therefore, for copper, Shear moduli < Young’s moduli < Bulk moduli
Hence, the correct option is (C).
Note: The Young’s modulus can describe the ability of the body to resist deformation on the application of force, so by using the value of Young’s modulus of the material we can also determine the rigidity of the body.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
Waves Class 11 Notes: CBSE Physics Chapter 14

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter
