
Volume of the parallelepiped whose coterminous edges are \[2\widehat{i}-3\widehat{j}+4\widehat{k}\], \[\widehat{i}+2\widehat{j}-2\widehat{k}\] and \[3\widehat{i}-\widehat{j}+\widehat{k}\] is
A. 5 cubic units
B. 6 cubic units
C. 7 cubic units
D. 8 cubic units
Answer
164.7k+ views
Hint: In the given question, we are to find the volume of the parallelepiped whose edges from the same corner are given in the form of vector equations. We can calculate the volume of the parallelepiped using the concept of determinant calculation using the matrix method.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here in the above question, we are given three vectors that represent the coterminous edges of the parallelepiped form. The three edges are coterminous which literally means they are passing through the same point on the plane. They are:
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}-3\widehat{j}+4\widehat{k} \\
& \overrightarrow{b}=\widehat{i}+2\widehat{j}-2\widehat{k} \\
& \overrightarrow{c}=3\widehat{i}-\widehat{j}+\widehat{k} \\
\end{align}\]
Then, the required volume of the parallelepiped is
$\begin{align}
& V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& \Rightarrow V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
\end{align}$
On substituting,
\[\begin{align}
& V=\left| \begin{matrix}
2 & -3 & 4 \\
1 & 2 & -2 \\
3 & -1 & 1 \\
\end{matrix} \right| \\
& \text{ }=2(2-2)+3(1+6)+4(-1-6) \\
& \text{ }=0+21-28 \\
& \text{ }=\left| -7 \right| \\
& \text{ }=7 \\
\end{align}\]
Thus, Option (C) is correct.
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulas used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here in the above question, we are given three vectors that represent the coterminous edges of the parallelepiped form. The three edges are coterminous which literally means they are passing through the same point on the plane. They are:
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}-3\widehat{j}+4\widehat{k} \\
& \overrightarrow{b}=\widehat{i}+2\widehat{j}-2\widehat{k} \\
& \overrightarrow{c}=3\widehat{i}-\widehat{j}+\widehat{k} \\
\end{align}\]
Then, the required volume of the parallelepiped is
$\begin{align}
& V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& \Rightarrow V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
\end{align}$
On substituting,
\[\begin{align}
& V=\left| \begin{matrix}
2 & -3 & 4 \\
1 & 2 & -2 \\
3 & -1 & 1 \\
\end{matrix} \right| \\
& \text{ }=2(2-2)+3(1+6)+4(-1-6) \\
& \text{ }=0+21-28 \\
& \text{ }=\left| -7 \right| \\
& \text{ }=7 \\
\end{align}\]
Thus, Option (C) is correct.
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulas used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Raipur Cut-off of Previous Years and Expected for 2025

JEE Main Eligibility Criteria 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

JEE Advanced 2025 Notes

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
