
Volume of the parallelepiped whose coterminous edges are \[2\widehat{i}-3\widehat{j}+4\widehat{k}\], \[\widehat{i}+2\widehat{j}-2\widehat{k}\] and \[3\widehat{i}-\widehat{j}+\widehat{k}\] is
A. 5 cubic units
B. 6 cubic units
C. 7 cubic units
D. 8 cubic units
Answer
232.8k+ views
Hint: In the given question, we are to find the volume of the parallelepiped whose edges from the same corner are given in the form of vector equations. We can calculate the volume of the parallelepiped using the concept of determinant calculation using the matrix method.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here in the above question, we are given three vectors that represent the coterminous edges of the parallelepiped form. The three edges are coterminous which literally means they are passing through the same point on the plane. They are:
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}-3\widehat{j}+4\widehat{k} \\
& \overrightarrow{b}=\widehat{i}+2\widehat{j}-2\widehat{k} \\
& \overrightarrow{c}=3\widehat{i}-\widehat{j}+\widehat{k} \\
\end{align}\]
Then, the required volume of the parallelepiped is
$\begin{align}
& V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& \Rightarrow V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
\end{align}$
On substituting,
\[\begin{align}
& V=\left| \begin{matrix}
2 & -3 & 4 \\
1 & 2 & -2 \\
3 & -1 & 1 \\
\end{matrix} \right| \\
& \text{ }=2(2-2)+3(1+6)+4(-1-6) \\
& \text{ }=0+21-28 \\
& \text{ }=\left| -7 \right| \\
& \text{ }=7 \\
\end{align}\]
Thus, Option (C) is correct.
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulas used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here in the above question, we are given three vectors that represent the coterminous edges of the parallelepiped form. The three edges are coterminous which literally means they are passing through the same point on the plane. They are:
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}-3\widehat{j}+4\widehat{k} \\
& \overrightarrow{b}=\widehat{i}+2\widehat{j}-2\widehat{k} \\
& \overrightarrow{c}=3\widehat{i}-\widehat{j}+\widehat{k} \\
\end{align}\]
Then, the required volume of the parallelepiped is
$\begin{align}
& V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& \Rightarrow V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
\end{align}$
On substituting,
\[\begin{align}
& V=\left| \begin{matrix}
2 & -3 & 4 \\
1 & 2 & -2 \\
3 & -1 & 1 \\
\end{matrix} \right| \\
& \text{ }=2(2-2)+3(1+6)+4(-1-6) \\
& \text{ }=0+21-28 \\
& \text{ }=\left| -7 \right| \\
& \text{ }=7 \\
\end{align}\]
Thus, Option (C) is correct.
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulas used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

