
Volume of the parallelepiped whose coterminous edges are \[2\widehat{i}-3\widehat{j}+4\widehat{k}\], \[\widehat{i}+2\widehat{j}-2\widehat{k}\] and \[3\widehat{i}-\widehat{j}+\widehat{k}\] is
A. 5 cubic units
B. 6 cubic units
C. 7 cubic units
D. 8 cubic units
Answer
217.8k+ views
Hint: In the given question, we are to find the volume of the parallelepiped whose edges from the same corner are given in the form of vector equations. We can calculate the volume of the parallelepiped using the concept of determinant calculation using the matrix method.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here in the above question, we are given three vectors that represent the coterminous edges of the parallelepiped form. The three edges are coterminous which literally means they are passing through the same point on the plane. They are:
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}-3\widehat{j}+4\widehat{k} \\
& \overrightarrow{b}=\widehat{i}+2\widehat{j}-2\widehat{k} \\
& \overrightarrow{c}=3\widehat{i}-\widehat{j}+\widehat{k} \\
\end{align}\]
Then, the required volume of the parallelepiped is
$\begin{align}
& V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& \Rightarrow V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
\end{align}$
On substituting,
\[\begin{align}
& V=\left| \begin{matrix}
2 & -3 & 4 \\
1 & 2 & -2 \\
3 & -1 & 1 \\
\end{matrix} \right| \\
& \text{ }=2(2-2)+3(1+6)+4(-1-6) \\
& \text{ }=0+21-28 \\
& \text{ }=\left| -7 \right| \\
& \text{ }=7 \\
\end{align}\]
Thus, Option (C) is correct.
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulas used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated.
Formula used: Scalar triple product of three vectors:
We have the vectors \[\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\] as
\[\begin{align}
& \overrightarrow{a}={{a}_{1}}\overrightarrow{i}+{{a}_{2}}\overrightarrow{j}+{{a}_{3}}\overrightarrow{k} \\
& \overrightarrow{b}={{b}_{1}}\overrightarrow{i}+{{b}_{2}}\overrightarrow{j}+{{b}_{3}}\overrightarrow{k} \\
& \overrightarrow{c}={{c}_{1}}\overrightarrow{i}+{{c}_{2}}\overrightarrow{j}+{{c}_{3}}\overrightarrow{k} \\
\end{align}\]
Then, the triple product is calculated by,
\[[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right|\]
Thus, the volume of a 3D structure is calculated by $V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]$
Complete step by step solution: Here in the above question, we are given three vectors that represent the coterminous edges of the parallelepiped form. The three edges are coterminous which literally means they are passing through the same point on the plane. They are:
\[\begin{align}
& \overrightarrow{a}=2\widehat{i}-3\widehat{j}+4\widehat{k} \\
& \overrightarrow{b}=\widehat{i}+2\widehat{j}-2\widehat{k} \\
& \overrightarrow{c}=3\widehat{i}-\widehat{j}+\widehat{k} \\
\end{align}\]
Then, the required volume of the parallelepiped is
$\begin{align}
& V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}] \\
& \Rightarrow V=[\overrightarrow{a}\text{ }\overrightarrow{b}\text{ }\overrightarrow{c}]=\left| \begin{matrix}
{{a}_{1}} & {{a}_{2}} & {{a}_{3}} \\
{{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\
{{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\
\end{matrix} \right| \\
\end{align}$
On substituting,
\[\begin{align}
& V=\left| \begin{matrix}
2 & -3 & 4 \\
1 & 2 & -2 \\
3 & -1 & 1 \\
\end{matrix} \right| \\
& \text{ }=2(2-2)+3(1+6)+4(-1-6) \\
& \text{ }=0+21-28 \\
& \text{ }=\left| -7 \right| \\
& \text{ }=7 \\
\end{align}\]
Thus, Option (C) is correct.
Note: Here we may go wrong with the vector identities and scalar triple product. Here are the simple formulas used for solving the given vector. By applying appropriate vector products, the given vector equation is evaluated.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

