
What is the value of the trigonometric expression $2\cos x - \cos 3x - \cos 5x$?
A. $16\cos^{3}x \sin^{2}x$
B. $16\sin^{3}x \cos^{2}x$
C. $4\cos^{3}x \sin^{2}x$
D. $4\sin^{3}x \cos^{2}x$
Answer
217.8k+ views
Hint: Simplify the given trigonometric equation using the formula of $\cos A + \cos B$. Further simplify the equation using the formulas of $\cos 2A$ and $\sin 2A$ to reach the required answer.
Formula Used:
$\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $
$\cos 2A = \cos^{2}A - sin^{2}A$
$\cos^{2}A + \sin^{2}A = 1$
$\sin 2A = 2\sin A \cos A$
Complete step by step solution:
The given trigonometric equation is $2\cos x – \cos 3x – \cos 5x$.
Let $T$ be the value of the given trigonometric expression.
$T = 2\cos x -\ cos 3x - \cos 5x$
$ \Rightarrow $$T = 2\cos x - \left( {\cos 5x + \cos 3x} \right)$
Now apply the formula of $\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $.
$T = 2\cos x – 2\cos\left( {\dfrac{{5x + 3x}}{2}} \right) \cos\left( {\dfrac{{5x - 3x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos\left( {\dfrac{{8x}}{2}} \right) \cos\left( {\dfrac{{2x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos 4x \cos x$
Factor out the common term.
$T = 2\cos x\left( {1 - \cos4x} \right)$
Now apply the formula $\cos^{2}A + \sin^{2}A = 1$.
$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \cos4x} \right)$
$ \Rightarrow $$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \left( {\cos^{2}2x - \sin^{2}2x} \right)} \right)$ [Since $\cos 2A = \cos^{2}A - \sin^{2}A$]
$ \Rightarrow $$T = 2\cos x\left( {2\sin^{2}2x} \right)$
$ \Rightarrow $$T = 4\cos x{\left( {\sin2x} \right)^2}$ [ Since $\sin^{2}A = {\left( {\sin A} \right)^2}$]
Apply the formula $\sin 2A = 2\sin A \cos A$.
$T = 4\cos x{\left( {2\sin x \cos x} \right)^2}$
Simplify the above equation.
$T = 4cosx\left( {4\sin^{2}x \cos^{2}x} \right)$
$ \Rightarrow $$T = 16\cos^{3}x \sin^{2}x $
Option ‘A’ is correct
Note: Trigonometric expressions can be solved by converting the sum or differences of sine or cosine functions to the product of trigonometric ratios.
Trigonometric ratios of compound angles include evaluation of trigonometric sum or trigonometric difference of two or more angles.
Formula Used:
$\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $
$\cos 2A = \cos^{2}A - sin^{2}A$
$\cos^{2}A + \sin^{2}A = 1$
$\sin 2A = 2\sin A \cos A$
Complete step by step solution:
The given trigonometric equation is $2\cos x – \cos 3x – \cos 5x$.
Let $T$ be the value of the given trigonometric expression.
$T = 2\cos x -\ cos 3x - \cos 5x$
$ \Rightarrow $$T = 2\cos x - \left( {\cos 5x + \cos 3x} \right)$
Now apply the formula of $\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $.
$T = 2\cos x – 2\cos\left( {\dfrac{{5x + 3x}}{2}} \right) \cos\left( {\dfrac{{5x - 3x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos\left( {\dfrac{{8x}}{2}} \right) \cos\left( {\dfrac{{2x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos 4x \cos x$
Factor out the common term.
$T = 2\cos x\left( {1 - \cos4x} \right)$
Now apply the formula $\cos^{2}A + \sin^{2}A = 1$.
$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \cos4x} \right)$
$ \Rightarrow $$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \left( {\cos^{2}2x - \sin^{2}2x} \right)} \right)$ [Since $\cos 2A = \cos^{2}A - \sin^{2}A$]
$ \Rightarrow $$T = 2\cos x\left( {2\sin^{2}2x} \right)$
$ \Rightarrow $$T = 4\cos x{\left( {\sin2x} \right)^2}$ [ Since $\sin^{2}A = {\left( {\sin A} \right)^2}$]
Apply the formula $\sin 2A = 2\sin A \cos A$.
$T = 4\cos x{\left( {2\sin x \cos x} \right)^2}$
Simplify the above equation.
$T = 4cosx\left( {4\sin^{2}x \cos^{2}x} \right)$
$ \Rightarrow $$T = 16\cos^{3}x \sin^{2}x $
Option ‘A’ is correct
Note: Trigonometric expressions can be solved by converting the sum or differences of sine or cosine functions to the product of trigonometric ratios.
Trigonometric ratios of compound angles include evaluation of trigonometric sum or trigonometric difference of two or more angles.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

