
What is the value of the trigonometric expression $2\cos x - \cos 3x - \cos 5x$?
A. $16\cos^{3}x \sin^{2}x$
B. $16\sin^{3}x \cos^{2}x$
C. $4\cos^{3}x \sin^{2}x$
D. $4\sin^{3}x \cos^{2}x$
Answer
232.8k+ views
Hint: Simplify the given trigonometric equation using the formula of $\cos A + \cos B$. Further simplify the equation using the formulas of $\cos 2A$ and $\sin 2A$ to reach the required answer.
Formula Used:
$\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $
$\cos 2A = \cos^{2}A - sin^{2}A$
$\cos^{2}A + \sin^{2}A = 1$
$\sin 2A = 2\sin A \cos A$
Complete step by step solution:
The given trigonometric equation is $2\cos x – \cos 3x – \cos 5x$.
Let $T$ be the value of the given trigonometric expression.
$T = 2\cos x -\ cos 3x - \cos 5x$
$ \Rightarrow $$T = 2\cos x - \left( {\cos 5x + \cos 3x} \right)$
Now apply the formula of $\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $.
$T = 2\cos x – 2\cos\left( {\dfrac{{5x + 3x}}{2}} \right) \cos\left( {\dfrac{{5x - 3x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos\left( {\dfrac{{8x}}{2}} \right) \cos\left( {\dfrac{{2x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos 4x \cos x$
Factor out the common term.
$T = 2\cos x\left( {1 - \cos4x} \right)$
Now apply the formula $\cos^{2}A + \sin^{2}A = 1$.
$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \cos4x} \right)$
$ \Rightarrow $$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \left( {\cos^{2}2x - \sin^{2}2x} \right)} \right)$ [Since $\cos 2A = \cos^{2}A - \sin^{2}A$]
$ \Rightarrow $$T = 2\cos x\left( {2\sin^{2}2x} \right)$
$ \Rightarrow $$T = 4\cos x{\left( {\sin2x} \right)^2}$ [ Since $\sin^{2}A = {\left( {\sin A} \right)^2}$]
Apply the formula $\sin 2A = 2\sin A \cos A$.
$T = 4\cos x{\left( {2\sin x \cos x} \right)^2}$
Simplify the above equation.
$T = 4cosx\left( {4\sin^{2}x \cos^{2}x} \right)$
$ \Rightarrow $$T = 16\cos^{3}x \sin^{2}x $
Option ‘A’ is correct
Note: Trigonometric expressions can be solved by converting the sum or differences of sine or cosine functions to the product of trigonometric ratios.
Trigonometric ratios of compound angles include evaluation of trigonometric sum or trigonometric difference of two or more angles.
Formula Used:
$\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $
$\cos 2A = \cos^{2}A - sin^{2}A$
$\cos^{2}A + \sin^{2}A = 1$
$\sin 2A = 2\sin A \cos A$
Complete step by step solution:
The given trigonometric equation is $2\cos x – \cos 3x – \cos 5x$.
Let $T$ be the value of the given trigonometric expression.
$T = 2\cos x -\ cos 3x - \cos 5x$
$ \Rightarrow $$T = 2\cos x - \left( {\cos 5x + \cos 3x} \right)$
Now apply the formula of $\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $.
$T = 2\cos x – 2\cos\left( {\dfrac{{5x + 3x}}{2}} \right) \cos\left( {\dfrac{{5x - 3x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos\left( {\dfrac{{8x}}{2}} \right) \cos\left( {\dfrac{{2x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos 4x \cos x$
Factor out the common term.
$T = 2\cos x\left( {1 - \cos4x} \right)$
Now apply the formula $\cos^{2}A + \sin^{2}A = 1$.
$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \cos4x} \right)$
$ \Rightarrow $$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \left( {\cos^{2}2x - \sin^{2}2x} \right)} \right)$ [Since $\cos 2A = \cos^{2}A - \sin^{2}A$]
$ \Rightarrow $$T = 2\cos x\left( {2\sin^{2}2x} \right)$
$ \Rightarrow $$T = 4\cos x{\left( {\sin2x} \right)^2}$ [ Since $\sin^{2}A = {\left( {\sin A} \right)^2}$]
Apply the formula $\sin 2A = 2\sin A \cos A$.
$T = 4\cos x{\left( {2\sin x \cos x} \right)^2}$
Simplify the above equation.
$T = 4cosx\left( {4\sin^{2}x \cos^{2}x} \right)$
$ \Rightarrow $$T = 16\cos^{3}x \sin^{2}x $
Option ‘A’ is correct
Note: Trigonometric expressions can be solved by converting the sum or differences of sine or cosine functions to the product of trigonometric ratios.
Trigonometric ratios of compound angles include evaluation of trigonometric sum or trigonometric difference of two or more angles.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

