
What is the value of the trigonometric expression $2\cos x - \cos 3x - \cos 5x$?
A. $16\cos^{3}x \sin^{2}x$
B. $16\sin^{3}x \cos^{2}x$
C. $4\cos^{3}x \sin^{2}x$
D. $4\sin^{3}x \cos^{2}x$
Answer
161.1k+ views
Hint: Simplify the given trigonometric equation using the formula of $\cos A + \cos B$. Further simplify the equation using the formulas of $\cos 2A$ and $\sin 2A$ to reach the required answer.
Formula Used:
$\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $
$\cos 2A = \cos^{2}A - sin^{2}A$
$\cos^{2}A + \sin^{2}A = 1$
$\sin 2A = 2\sin A \cos A$
Complete step by step solution:
The given trigonometric equation is $2\cos x – \cos 3x – \cos 5x$.
Let $T$ be the value of the given trigonometric expression.
$T = 2\cos x -\ cos 3x - \cos 5x$
$ \Rightarrow $$T = 2\cos x - \left( {\cos 5x + \cos 3x} \right)$
Now apply the formula of $\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $.
$T = 2\cos x – 2\cos\left( {\dfrac{{5x + 3x}}{2}} \right) \cos\left( {\dfrac{{5x - 3x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos\left( {\dfrac{{8x}}{2}} \right) \cos\left( {\dfrac{{2x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos 4x \cos x$
Factor out the common term.
$T = 2\cos x\left( {1 - \cos4x} \right)$
Now apply the formula $\cos^{2}A + \sin^{2}A = 1$.
$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \cos4x} \right)$
$ \Rightarrow $$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \left( {\cos^{2}2x - \sin^{2}2x} \right)} \right)$ [Since $\cos 2A = \cos^{2}A - \sin^{2}A$]
$ \Rightarrow $$T = 2\cos x\left( {2\sin^{2}2x} \right)$
$ \Rightarrow $$T = 4\cos x{\left( {\sin2x} \right)^2}$ [ Since $\sin^{2}A = {\left( {\sin A} \right)^2}$]
Apply the formula $\sin 2A = 2\sin A \cos A$.
$T = 4\cos x{\left( {2\sin x \cos x} \right)^2}$
Simplify the above equation.
$T = 4cosx\left( {4\sin^{2}x \cos^{2}x} \right)$
$ \Rightarrow $$T = 16\cos^{3}x \sin^{2}x $
Option ‘A’ is correct
Note: Trigonometric expressions can be solved by converting the sum or differences of sine or cosine functions to the product of trigonometric ratios.
Trigonometric ratios of compound angles include evaluation of trigonometric sum or trigonometric difference of two or more angles.
Formula Used:
$\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $
$\cos 2A = \cos^{2}A - sin^{2}A$
$\cos^{2}A + \sin^{2}A = 1$
$\sin 2A = 2\sin A \cos A$
Complete step by step solution:
The given trigonometric equation is $2\cos x – \cos 3x – \cos 5x$.
Let $T$ be the value of the given trigonometric expression.
$T = 2\cos x -\ cos 3x - \cos 5x$
$ \Rightarrow $$T = 2\cos x - \left( {\cos 5x + \cos 3x} \right)$
Now apply the formula of $\cos A + \cos B = 2\cos\left( {\dfrac{{A + B}}{2}} \right) \cos\left( {\dfrac{{A - B}}{2}} \right) $.
$T = 2\cos x – 2\cos\left( {\dfrac{{5x + 3x}}{2}} \right) \cos\left( {\dfrac{{5x - 3x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos\left( {\dfrac{{8x}}{2}} \right) \cos\left( {\dfrac{{2x}}{2}} \right) $
$ \Rightarrow $$T = 2\cos x – 2\cos 4x \cos x$
Factor out the common term.
$T = 2\cos x\left( {1 - \cos4x} \right)$
Now apply the formula $\cos^{2}A + \sin^{2}A = 1$.
$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \cos4x} \right)$
$ \Rightarrow $$T = 2\cos x\left( {\cos^{2}2x + \sin^{2}2x - \left( {\cos^{2}2x - \sin^{2}2x} \right)} \right)$ [Since $\cos 2A = \cos^{2}A - \sin^{2}A$]
$ \Rightarrow $$T = 2\cos x\left( {2\sin^{2}2x} \right)$
$ \Rightarrow $$T = 4\cos x{\left( {\sin2x} \right)^2}$ [ Since $\sin^{2}A = {\left( {\sin A} \right)^2}$]
Apply the formula $\sin 2A = 2\sin A \cos A$.
$T = 4\cos x{\left( {2\sin x \cos x} \right)^2}$
Simplify the above equation.
$T = 4cosx\left( {4\sin^{2}x \cos^{2}x} \right)$
$ \Rightarrow $$T = 16\cos^{3}x \sin^{2}x $
Option ‘A’ is correct
Note: Trigonometric expressions can be solved by converting the sum or differences of sine or cosine functions to the product of trigonometric ratios.
Trigonometric ratios of compound angles include evaluation of trigonometric sum or trigonometric difference of two or more angles.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
