
What is the value of the definite integral \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\] ?
A. \[\dfrac{a}{2}\]
B. \[\dfrac{{na + 2}}{{2n}}\]
C. \[\dfrac{{na - 2}}{{2n}}\]
D. None of these
Answer
164.1k+ views
Hint:Here, a definite integral is given. First, simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \]. Then, add both integrals and solve the integral by using the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right] dx} = \int\limits_a^b {f\left( x \right) dx} + \int\limits_a^b {g\left( x \right) dx} \]. After that, solve the integral by using the integration formula \[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]. In the end, apply the limits and solve the equation to get the required answer.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \]
Sum rule of the integration:\[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right] dx} = \int\limits_a^b {f\left( x \right) dx} + \int\limits_a^b {g\left( x \right) dx} \]
\[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\].
Let consider,
\[I = \int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\]
Simplify the upper limit.
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \].
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}{{\sqrt {a - \left( {\dfrac{1}{n} + a - \dfrac{1}{n} - x} \right)} + \sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - \dfrac{1}{n} - a + \dfrac{1}{n} + x} + \sqrt {a - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx + \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\]
Apply the sum rule of the integration.
\[2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }} + \dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x + \sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} 1 dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
\[ \Rightarrow 2I = \left[ x \right]_{\dfrac{1}{n}}^{a - \dfrac{1}{n}}\]
Apply the upper and lower limits.
\[ \Rightarrow 2I = a - \dfrac{1}{n} - \dfrac{1}{n}\]
\[ \Rightarrow 2I = a - \dfrac{2}{n}\]
\[ \Rightarrow 2I = \dfrac{{na - 2}}{n}\]
\[ \Rightarrow I = \dfrac{{na - 2}}{{2n}}\]
Thus, \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx = \dfrac{{na - 2}}{{2n}}\].
Option ‘C’ is correct
Note: Students often get confused and try to solve the integral by splitting the function. Because of that, the integral became more complicated and they get the wrong answer.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \]
Sum rule of the integration:\[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right] dx} = \int\limits_a^b {f\left( x \right) dx} + \int\limits_a^b {g\left( x \right) dx} \]
\[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\].
Let consider,
\[I = \int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\]
Simplify the upper limit.
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \].
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}{{\sqrt {a - \left( {\dfrac{1}{n} + a - \dfrac{1}{n} - x} \right)} + \sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - \dfrac{1}{n} - a + \dfrac{1}{n} + x} + \sqrt {a - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx + \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\]
Apply the sum rule of the integration.
\[2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }} + \dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x + \sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} 1 dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
\[ \Rightarrow 2I = \left[ x \right]_{\dfrac{1}{n}}^{a - \dfrac{1}{n}}\]
Apply the upper and lower limits.
\[ \Rightarrow 2I = a - \dfrac{1}{n} - \dfrac{1}{n}\]
\[ \Rightarrow 2I = a - \dfrac{2}{n}\]
\[ \Rightarrow 2I = \dfrac{{na - 2}}{n}\]
\[ \Rightarrow I = \dfrac{{na - 2}}{{2n}}\]
Thus, \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx = \dfrac{{na - 2}}{{2n}}\].
Option ‘C’ is correct
Note: Students often get confused and try to solve the integral by splitting the function. Because of that, the integral became more complicated and they get the wrong answer.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
