
What is the value of the definite integral \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\] ?
A. \[\dfrac{a}{2}\]
B. \[\dfrac{{na + 2}}{{2n}}\]
C. \[\dfrac{{na - 2}}{{2n}}\]
D. None of these
Answer
218.1k+ views
Hint:Here, a definite integral is given. First, simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \]. Then, add both integrals and solve the integral by using the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right] dx} = \int\limits_a^b {f\left( x \right) dx} + \int\limits_a^b {g\left( x \right) dx} \]. After that, solve the integral by using the integration formula \[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]. In the end, apply the limits and solve the equation to get the required answer.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \]
Sum rule of the integration:\[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right] dx} = \int\limits_a^b {f\left( x \right) dx} + \int\limits_a^b {g\left( x \right) dx} \]
\[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\].
Let consider,
\[I = \int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\]
Simplify the upper limit.
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \].
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}{{\sqrt {a - \left( {\dfrac{1}{n} + a - \dfrac{1}{n} - x} \right)} + \sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - \dfrac{1}{n} - a + \dfrac{1}{n} + x} + \sqrt {a - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx + \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\]
Apply the sum rule of the integration.
\[2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }} + \dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x + \sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} 1 dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
\[ \Rightarrow 2I = \left[ x \right]_{\dfrac{1}{n}}^{a - \dfrac{1}{n}}\]
Apply the upper and lower limits.
\[ \Rightarrow 2I = a - \dfrac{1}{n} - \dfrac{1}{n}\]
\[ \Rightarrow 2I = a - \dfrac{2}{n}\]
\[ \Rightarrow 2I = \dfrac{{na - 2}}{n}\]
\[ \Rightarrow I = \dfrac{{na - 2}}{{2n}}\]
Thus, \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx = \dfrac{{na - 2}}{{2n}}\].
Option ‘C’ is correct
Note: Students often get confused and try to solve the integral by splitting the function. Because of that, the integral became more complicated and they get the wrong answer.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \]
Sum rule of the integration:\[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right] dx} = \int\limits_a^b {f\left( x \right) dx} + \int\limits_a^b {g\left( x \right) dx} \]
\[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\].
Let consider,
\[I = \int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\]
Simplify the upper limit.
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \].
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}{{\sqrt {a - \left( {\dfrac{1}{n} + a - \dfrac{1}{n} - x} \right)} + \sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - \dfrac{1}{n} - a + \dfrac{1}{n} + x} + \sqrt {a - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx + \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\]
Apply the sum rule of the integration.
\[2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }} + \dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x + \sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} 1 dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
\[ \Rightarrow 2I = \left[ x \right]_{\dfrac{1}{n}}^{a - \dfrac{1}{n}}\]
Apply the upper and lower limits.
\[ \Rightarrow 2I = a - \dfrac{1}{n} - \dfrac{1}{n}\]
\[ \Rightarrow 2I = a - \dfrac{2}{n}\]
\[ \Rightarrow 2I = \dfrac{{na - 2}}{n}\]
\[ \Rightarrow I = \dfrac{{na - 2}}{{2n}}\]
Thus, \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx = \dfrac{{na - 2}}{{2n}}\].
Option ‘C’ is correct
Note: Students often get confused and try to solve the integral by splitting the function. Because of that, the integral became more complicated and they get the wrong answer.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

