
What is the value of the definite integral \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\] ?
A. \[\dfrac{a}{2}\]
B. \[\dfrac{{na + 2}}{{2n}}\]
C. \[\dfrac{{na - 2}}{{2n}}\]
D. None of these
Answer
232.8k+ views
Hint:Here, a definite integral is given. First, simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \]. Then, add both integrals and solve the integral by using the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right] dx} = \int\limits_a^b {f\left( x \right) dx} + \int\limits_a^b {g\left( x \right) dx} \]. After that, solve the integral by using the integration formula \[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]. In the end, apply the limits and solve the equation to get the required answer.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \]
Sum rule of the integration:\[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right] dx} = \int\limits_a^b {f\left( x \right) dx} + \int\limits_a^b {g\left( x \right) dx} \]
\[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\].
Let consider,
\[I = \int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\]
Simplify the upper limit.
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \].
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}{{\sqrt {a - \left( {\dfrac{1}{n} + a - \dfrac{1}{n} - x} \right)} + \sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - \dfrac{1}{n} - a + \dfrac{1}{n} + x} + \sqrt {a - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx + \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\]
Apply the sum rule of the integration.
\[2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }} + \dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x + \sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} 1 dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
\[ \Rightarrow 2I = \left[ x \right]_{\dfrac{1}{n}}^{a - \dfrac{1}{n}}\]
Apply the upper and lower limits.
\[ \Rightarrow 2I = a - \dfrac{1}{n} - \dfrac{1}{n}\]
\[ \Rightarrow 2I = a - \dfrac{2}{n}\]
\[ \Rightarrow 2I = \dfrac{{na - 2}}{n}\]
\[ \Rightarrow I = \dfrac{{na - 2}}{{2n}}\]
Thus, \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx = \dfrac{{na - 2}}{{2n}}\].
Option ‘C’ is correct
Note: Students often get confused and try to solve the integral by splitting the function. Because of that, the integral became more complicated and they get the wrong answer.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \]
Sum rule of the integration:\[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right] dx} = \int\limits_a^b {f\left( x \right) dx} + \int\limits_a^b {g\left( x \right) dx} \]
\[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\]
Complete step by step solution:The given definite integral is \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\].
Let consider,
\[I = \int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\]
Simplify the upper limit.
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx\] \[.....\left( 1 \right)\]
Now apply the integration rule \[\int\limits_a^b {f\left( x \right) dx} = \int\limits_a^b {f\left( {a + b - x} \right) dx} \].
\[I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}{{\sqrt {a - \left( {\dfrac{1}{n} + a - \dfrac{1}{n} - x} \right)} + \sqrt {\dfrac{1}{n} + a - \dfrac{1}{n} - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt {a - \dfrac{1}{n} - a + \dfrac{1}{n} + x} + \sqrt {a - x} }}} dx\]
\[ \Rightarrow I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\] \[.....\left( 2 \right)\]
Add the equations \[\left( 1 \right)\] and \[\left( 2 \right)\].
\[I + I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx + \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} dx\]
Apply the sum rule of the integration.
\[2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }} + \dfrac{{\sqrt {a - x} }}{{\sqrt x + \sqrt {a - x} }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} {\left[ {\dfrac{{\sqrt x + \sqrt {a - x} }}{{\sqrt {a - x} + \sqrt x }}} \right]} dx\]
\[ \Rightarrow 2I = \int\limits_{\dfrac{1}{n}}^{a - \dfrac{1}{n}} 1 dx\]
Solve the integral by using the integration formula \[\int\limits_a^b {n dx} = \left[ {nx} \right]_a^b = n\left( {b - a} \right)\].
\[ \Rightarrow 2I = \left[ x \right]_{\dfrac{1}{n}}^{a - \dfrac{1}{n}}\]
Apply the upper and lower limits.
\[ \Rightarrow 2I = a - \dfrac{1}{n} - \dfrac{1}{n}\]
\[ \Rightarrow 2I = a - \dfrac{2}{n}\]
\[ \Rightarrow 2I = \dfrac{{na - 2}}{n}\]
\[ \Rightarrow I = \dfrac{{na - 2}}{{2n}}\]
Thus, \[\int\limits_{\dfrac{1}{n}}^{\dfrac{{an - 1}}{n}} {\dfrac{{\sqrt x }}{{\sqrt {a - x} + \sqrt x }}} dx = \dfrac{{na - 2}}{{2n}}\].
Option ‘C’ is correct
Note: Students often get confused and try to solve the integral by splitting the function. Because of that, the integral became more complicated and they get the wrong answer.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

