
What is the value of the definite integral \[\int\limits_0^{n\pi + v} {\left| {\sin x} \right|} dx\]?
A. \[2n + 1 + \cos v\]
B. \[2n + 1 - \cos v\]
C. \[2n + 1\]
D. \[2n + \cos v\]
Answer
161.1k+ views
Hint: Here, a definite integral is given. First, simplify the integral by applying the integration formula \[\int\limits_a^b {f\left( x \right)dx = } \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx} } \]. Then, simplify the integrals by calculating the period of the functions in the corresponding integrals. After that, solve the integral by applying the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]. In the end, apply the limits and solve the equation to get the required answer.
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right)dx = } \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx} } \]
\[\int\limits_a^{a + nT} {f\left( x \right)dx = } n\int\limits_0^T {f\left( x \right)dx} \], where \[T\] is the period of the function.
\[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{n\pi + v} {\left| {\sin x} \right|} dx\].
Let consider,
\[I = \int\limits_0^{n\pi + v} {\left| {\sin x} \right|} dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)dx = } \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx} } \].
\[I = \int\limits_0^v {\left| {\sin x} \right|} dx + \int\limits_v^{n\pi + v} {\left| {\sin x} \right|} dx\]
We know that, \[\sin x\] is positive in the first and the second quadrant.
Also, period of the function \[\sin x\] is \[\pi \]. So, apply the integration rule \[\int\limits_a^{a + nT} {f\left( x \right)dx = } n\int\limits_0^T {f\left( x \right)dx} \], where \[T\] is the period of the function.
We get,
\[I = \int\limits_0^v {\sin x} dx + n\int\limits_0^\pi {\sin x} dx\]
Now solve the integral by applying the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\].
\[I = \left[ { - \cos x} \right]_0^v + n\left[ { - \cos x} \right]_0^\pi \]
Apply the upper and lower limits.
\[I = \left[ { - \cos v - \left( { - \cos 0} \right)} \right] + n\left[ { - \cos \pi - \left( { - \cos 0} \right)} \right]\]
\[ \Rightarrow I = \left[ { - \cos v - \left( { - 1} \right)} \right] + n\left[ { - \left( { - 1} \right) - \left( { - 1} \right)} \right]\]
\[ \Rightarrow I = 1 - \cos v + n\left[ {1 + 1} \right]\]
\[ \Rightarrow I = 1 - \cos v + 2n\]
\[ \Rightarrow I = 2n + 1 - \cos v\]
Thus, \[\int\limits_0^{n\pi + v} {\left| {\sin x} \right|} dx = 2n + 1 - \cos v\].
Option ‘B’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {\sin x} dx\] . They apply the formula \[\int\limits_a^b {\sin x} dx = \left[ {\cos x} \right]_a^b\] which is an incorrect formula. They get confused because \[\dfrac{d}{{dx}}\sin x = \cos x\] . The correct formula is \[\int\limits_a^b {\sin x} dx = \left[ { - \cos x} \right]_a^b\].
Formula Used:Integration rule: \[\int\limits_a^b {f\left( x \right)dx = } \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx} } \]
\[\int\limits_a^{a + nT} {f\left( x \right)dx = } n\int\limits_0^T {f\left( x \right)dx} \], where \[T\] is the period of the function.
\[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\]
Complete step by step solution:The given definite integral is \[\int\limits_0^{n\pi + v} {\left| {\sin x} \right|} dx\].
Let consider,
\[I = \int\limits_0^{n\pi + v} {\left| {\sin x} \right|} dx\]
Simplify the integral by applying the integration rule \[\int\limits_a^b {f\left( x \right)dx = } \int\limits_a^c {f\left( x \right)dx + \int\limits_c^b {f\left( x \right)dx} } \].
\[I = \int\limits_0^v {\left| {\sin x} \right|} dx + \int\limits_v^{n\pi + v} {\left| {\sin x} \right|} dx\]
We know that, \[\sin x\] is positive in the first and the second quadrant.
Also, period of the function \[\sin x\] is \[\pi \]. So, apply the integration rule \[\int\limits_a^{a + nT} {f\left( x \right)dx = } n\int\limits_0^T {f\left( x \right)dx} \], where \[T\] is the period of the function.
We get,
\[I = \int\limits_0^v {\sin x} dx + n\int\limits_0^\pi {\sin x} dx\]
Now solve the integral by applying the integration formula \[\int\limits_a^b {\sin xdx = \left[ { - \cos x} \right]} _a^b\].
\[I = \left[ { - \cos x} \right]_0^v + n\left[ { - \cos x} \right]_0^\pi \]
Apply the upper and lower limits.
\[I = \left[ { - \cos v - \left( { - \cos 0} \right)} \right] + n\left[ { - \cos \pi - \left( { - \cos 0} \right)} \right]\]
\[ \Rightarrow I = \left[ { - \cos v - \left( { - 1} \right)} \right] + n\left[ { - \left( { - 1} \right) - \left( { - 1} \right)} \right]\]
\[ \Rightarrow I = 1 - \cos v + n\left[ {1 + 1} \right]\]
\[ \Rightarrow I = 1 - \cos v + 2n\]
\[ \Rightarrow I = 2n + 1 - \cos v\]
Thus, \[\int\limits_0^{n\pi + v} {\left| {\sin x} \right|} dx = 2n + 1 - \cos v\].
Option ‘B’ is correct
Note: Students often do mistake to integrating \[\int\limits_a^b {\sin x} dx\] . They apply the formula \[\int\limits_a^b {\sin x} dx = \left[ {\cos x} \right]_a^b\] which is an incorrect formula. They get confused because \[\dfrac{d}{{dx}}\sin x = \cos x\] . The correct formula is \[\int\limits_a^b {\sin x} dx = \left[ { - \cos x} \right]_a^b\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
