
What is the value of $\tan {{\text{5}}^0}\tan 2{{\text{5}}^0}\tan {30^0}\tan 6{{\text{5}}^0}\tan
8{{\text{5}}^0} = $
$
\left( a \right){\text{ 1}} \\
\left( b \right){\text{ }}\dfrac{1}{2} \\
\left( c \right){\text{ }}\sqrt 3 \\
\left( d \right){\text{ }}\dfrac{1}{{\sqrt 3 }} \\
$
Answer
232.8k+ views
Hint- Use the basic trigonometric identity of $\tan (90 - \theta ) = \cot \theta $
Now we have to find the value of $\tan {{\text{5}}^0}\tan 2{{\text{5}}^0}\tan {30^0}\tan
6{{\text{5}}^0}\tan 8{{\text{5}}^0}$
Using $\tan {30^0} = \dfrac{1}{{\sqrt 3 }}$above we get
\[{\text{tan}}{{\text{5}}^0}{\text{tan2}}{{\text{5}}^0}\left( {\dfrac{1}{{\sqrt 3 }}}
\right){\text{tan6}}{{\text{5}}^0}{\text{tan8}}{{\text{5}}^0}\]
Now we can write \[{\text{tan6}}{{\text{5}}^0}\]as \[{\text{tan}}\left( {90 - 25} \right)\]and similar concept we will to \[{\text{tan8}}{{\text{5}}^0}\]
Thus we get
\[{\text{tan}}{{\text{5}}^0}{\text{tan2}}{{\text{5}}^0}\left( {\dfrac{1}{{\sqrt 3 }}} \right){\text{tan}}\left(
{90 - 25} \right){\text{tan}}\left( {90 - 5} \right)\]
Using the concept that $\tan (90 - \theta ) = \cot \theta $ we can rewrite the above as
\[{\text{tan}}{{\text{5}}^0}{\text{tan2}}{{\text{5}}^0}\left( {\dfrac{1}{{\sqrt 3 }}}
\right){\text{cot2}}{{\text{5}}^0}\cot {5^0}\]
As $\tan \theta = \dfrac{1}{{\cot \theta }}$
The above equation is simplified to \[\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]
So option (d) is the right answer.
Note- The key concept that we need to recall every time we solve such type of problem is that always try
and convert one angle into other by subtracting or even sometimes adding it with the number that can
help changing the trigonometric term in order to cancel them with other terms to reach to the
simplified answer.
Now we have to find the value of $\tan {{\text{5}}^0}\tan 2{{\text{5}}^0}\tan {30^0}\tan
6{{\text{5}}^0}\tan 8{{\text{5}}^0}$
Using $\tan {30^0} = \dfrac{1}{{\sqrt 3 }}$above we get
\[{\text{tan}}{{\text{5}}^0}{\text{tan2}}{{\text{5}}^0}\left( {\dfrac{1}{{\sqrt 3 }}}
\right){\text{tan6}}{{\text{5}}^0}{\text{tan8}}{{\text{5}}^0}\]
Now we can write \[{\text{tan6}}{{\text{5}}^0}\]as \[{\text{tan}}\left( {90 - 25} \right)\]and similar concept we will to \[{\text{tan8}}{{\text{5}}^0}\]
Thus we get
\[{\text{tan}}{{\text{5}}^0}{\text{tan2}}{{\text{5}}^0}\left( {\dfrac{1}{{\sqrt 3 }}} \right){\text{tan}}\left(
{90 - 25} \right){\text{tan}}\left( {90 - 5} \right)\]
Using the concept that $\tan (90 - \theta ) = \cot \theta $ we can rewrite the above as
\[{\text{tan}}{{\text{5}}^0}{\text{tan2}}{{\text{5}}^0}\left( {\dfrac{1}{{\sqrt 3 }}}
\right){\text{cot2}}{{\text{5}}^0}\cot {5^0}\]
As $\tan \theta = \dfrac{1}{{\cot \theta }}$
The above equation is simplified to \[\left( {\dfrac{1}{{\sqrt 3 }}} \right)\]
So option (d) is the right answer.
Note- The key concept that we need to recall every time we solve such type of problem is that always try
and convert one angle into other by subtracting or even sometimes adding it with the number that can
help changing the trigonometric term in order to cancel them with other terms to reach to the
simplified answer.
Recently Updated Pages
Know The Difference Between Fluid And Liquid

Difference Between Crystalline and Amorphous Solid: Table & Examples

Types of Solutions in Chemistry: Explained Simply

Hess Law of Constant Heat Summation: Definition, Formula & Applications

Disproportionation Reaction: Definition, Example & JEE Guide

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

