
What is the value of \[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right)\]?
A. \[\dfrac{\pi }{4} - \dfrac{x}{2}\]
B.\[\dfrac{\pi }{4} + \dfrac{x}{2}\]
C.\[\dfrac{x}{2}\]
D.\[\dfrac{\pi }{4} - x\]
Answer
162.9k+ views
Hint: To solve the above question first we will use the double angle identities, and then divide the numerator and denominator with \[\cos \dfrac{x}{2}\], and simplifying the expression and finally using trigonometric formula \[\dfrac{{\sin x}}{{\cos x}} = \tan x\], and finally using inverse trigonometric functions \[{\tan ^{ - 1}}\left( {\tan x} \right) = x\] to get the required result.
Formula used: We will use the double-angle formulas such as,
\[\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\], and \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\],
And we will simplify the \[\sin x\] double angle formula i.e., \[1 + \sin x = {\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)^2}\].
And using the trigonometric formulas \[\dfrac{{\sin x}}{{\cos x}} = \tan x\], and inverse trigonometric formula,
\[{\tan ^{ - 1}}\left( {\tan x} \right) = x\].
Complete Step-by-Step Solution:
Given \[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right)\]
Now using the identities \[\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\],\[1 + \sin x = {\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)^2}\] and we will substitute the values in the expression, we will then get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}} \right)\]
Now we will simplify, we will then get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}} \right)\]
Now we will eliminate the like terms, then we will get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}} \right)\]
Now we will divide numerator and denominator with \[\cos \dfrac{x}{2}\], we will get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}} \right)\]
Now we will simplify by distributing the denominator, we will then get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} - \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}} \right)\]
Now we will trigonometric formula, \[\dfrac{{\sin x}}{{\cos x}} = \tan x\],
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {1 - \tan \dfrac{x}{2}} \right)}}{{\left( {1 + \tan \dfrac{x}{2}} \right)}}} \right)\]
Now we will trigonometric formula i.e., \[\begin{array}{l}\\\dfrac{{1 - \tan \dfrac{x}{2}}}{{1 + \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)\end{array}\], we will get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right)\]
Now again we will inverse trigonometric formula, \[{\tan ^{ - 1}}\left( {\tan x} \right) = x\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)\]
The correct option is A..
Note: Student are often confused with \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\] and \[\tan \left( {a - b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\]. But the correct formula is \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\].
Formula used: We will use the double-angle formulas such as,
\[\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\], and \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\],
And we will simplify the \[\sin x\] double angle formula i.e., \[1 + \sin x = {\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)^2}\].
And using the trigonometric formulas \[\dfrac{{\sin x}}{{\cos x}} = \tan x\], and inverse trigonometric formula,
\[{\tan ^{ - 1}}\left( {\tan x} \right) = x\].
Complete Step-by-Step Solution:
Given \[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right)\]
Now using the identities \[\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\],\[1 + \sin x = {\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)^2}\] and we will substitute the values in the expression, we will then get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}} \right)\]
Now we will simplify, we will then get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}} \right)\]
Now we will eliminate the like terms, then we will get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}} \right)\]
Now we will divide numerator and denominator with \[\cos \dfrac{x}{2}\], we will get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}} \right)\]
Now we will simplify by distributing the denominator, we will then get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} - \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}} \right)\]
Now we will trigonometric formula, \[\dfrac{{\sin x}}{{\cos x}} = \tan x\],
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {1 - \tan \dfrac{x}{2}} \right)}}{{\left( {1 + \tan \dfrac{x}{2}} \right)}}} \right)\]
Now we will trigonometric formula i.e., \[\begin{array}{l}\\\dfrac{{1 - \tan \dfrac{x}{2}}}{{1 + \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)\end{array}\], we will get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right)\]
Now again we will inverse trigonometric formula, \[{\tan ^{ - 1}}\left( {\tan x} \right) = x\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)\]
The correct option is A..
Note: Student are often confused with \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\] and \[\tan \left( {a - b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\]. But the correct formula is \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\].
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

1 Billion in Rupees

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
