
What is the value of \[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right)\]?
A. \[\dfrac{\pi }{4} - \dfrac{x}{2}\]
B.\[\dfrac{\pi }{4} + \dfrac{x}{2}\]
C.\[\dfrac{x}{2}\]
D.\[\dfrac{\pi }{4} - x\]
Answer
218.4k+ views
Hint: To solve the above question first we will use the double angle identities, and then divide the numerator and denominator with \[\cos \dfrac{x}{2}\], and simplifying the expression and finally using trigonometric formula \[\dfrac{{\sin x}}{{\cos x}} = \tan x\], and finally using inverse trigonometric functions \[{\tan ^{ - 1}}\left( {\tan x} \right) = x\] to get the required result.
Formula used: We will use the double-angle formulas such as,
\[\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\], and \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\],
And we will simplify the \[\sin x\] double angle formula i.e., \[1 + \sin x = {\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)^2}\].
And using the trigonometric formulas \[\dfrac{{\sin x}}{{\cos x}} = \tan x\], and inverse trigonometric formula,
\[{\tan ^{ - 1}}\left( {\tan x} \right) = x\].
Complete Step-by-Step Solution:
Given \[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right)\]
Now using the identities \[\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\],\[1 + \sin x = {\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)^2}\] and we will substitute the values in the expression, we will then get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}} \right)\]
Now we will simplify, we will then get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}} \right)\]
Now we will eliminate the like terms, then we will get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}} \right)\]
Now we will divide numerator and denominator with \[\cos \dfrac{x}{2}\], we will get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}} \right)\]
Now we will simplify by distributing the denominator, we will then get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} - \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}} \right)\]
Now we will trigonometric formula, \[\dfrac{{\sin x}}{{\cos x}} = \tan x\],
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {1 - \tan \dfrac{x}{2}} \right)}}{{\left( {1 + \tan \dfrac{x}{2}} \right)}}} \right)\]
Now we will trigonometric formula i.e., \[\begin{array}{l}\\\dfrac{{1 - \tan \dfrac{x}{2}}}{{1 + \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)\end{array}\], we will get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right)\]
Now again we will inverse trigonometric formula, \[{\tan ^{ - 1}}\left( {\tan x} \right) = x\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)\]
The correct option is A..
Note: Student are often confused with \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\] and \[\tan \left( {a - b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\]. But the correct formula is \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\].
Formula used: We will use the double-angle formulas such as,
\[\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\], and \[\sin x = 2\sin \dfrac{x}{2}\cos \dfrac{x}{2}\],
And we will simplify the \[\sin x\] double angle formula i.e., \[1 + \sin x = {\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)^2}\].
And using the trigonometric formulas \[\dfrac{{\sin x}}{{\cos x}} = \tan x\], and inverse trigonometric formula,
\[{\tan ^{ - 1}}\left( {\tan x} \right) = x\].
Complete Step-by-Step Solution:
Given \[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right)\]
Now using the identities \[\cos x = {\cos ^2}\dfrac{x}{2} - {\sin ^2}\dfrac{x}{2}\],\[1 + \sin x = {\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)^2}\] and we will substitute the values in the expression, we will then get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}} \right)\]
Now we will simplify, we will then get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}} \right)\]
Now we will eliminate the like terms, then we will get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)}}{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}} \right)\]
Now we will divide numerator and denominator with \[\cos \dfrac{x}{2}\], we will get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}} \right)\]
Now we will simplify by distributing the denominator, we will then get,
\[{\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} - \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}{{\left( {\dfrac{{\cos \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}} + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}} \right)}}} \right)\]
Now we will trigonometric formula, \[\dfrac{{\sin x}}{{\cos x}} = \tan x\],
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\left( {1 - \tan \dfrac{x}{2}} \right)}}{{\left( {1 + \tan \dfrac{x}{2}} \right)}}} \right)\]
Now we will trigonometric formula i.e., \[\begin{array}{l}\\\dfrac{{1 - \tan \dfrac{x}{2}}}{{1 + \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)\end{array}\], we will get,
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = {\tan ^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)} \right)\]
Now again we will inverse trigonometric formula, \[{\tan ^{ - 1}}\left( {\tan x} \right) = x\]
\[ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{\cos x}}{{1 + \sin x}}} \right) = \left( {\dfrac{\pi }{4} - \dfrac{x}{2}} \right)\]
The correct option is A..
Note: Student are often confused with \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\] and \[\tan \left( {a - b} \right) = \dfrac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\]. But the correct formula is \[\tan \left( {a - b} \right) = \dfrac{{\tan a - \tan b}}{{1 + \tan a\tan b}}\].
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

