
What is the value of $\dfrac{1}{{\sin {{10}^ \circ }}} - \dfrac{{\sqrt 3 }}{{\cos {{10}^ \circ }}} = $
A. $0$
B. $1$
C. $2$
D. $4$
Answer
233.1k+ views
Hint: In order to solve this type of question, first we will consider the given equation. Then, we will simplify it by using multiplication and division. Next, we will apply suitable trigonometric identities ($\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$ and $\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$) in the equation formed and simplify it further in order to get the desired answer.
Formula used: $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
$\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right]$
$\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
$\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Complete step by step solution:
Consider,
$\dfrac{1}{{\sin {{10}^ \circ }}} - \dfrac{{\sqrt 3 }}{{\cos {{10}^ \circ }}}$
\[ = \dfrac{{\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }}}{{\sin {{10}^ \circ }\cos {{10}^ \circ }}}\]
Multiply the numerator and denominator by $2,$
\[ = \dfrac{{2\left( {\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }} \right)}}{{2\left( {\sin {{10}^ \circ }\cos {{10}^ \circ }} \right)}}\]
Multiply and divide the numerator by $2,$
\[ = \dfrac{{2 \times 2 \times \dfrac{1}{2}\left( {\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
\[ = \dfrac{{4\left( {\dfrac{1}{2}\cos {{10}^ \circ } - \dfrac{{\sqrt 3 }}{2}\sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\]
Simplifying it,
\[ = \dfrac{{4\left( {\sin {{30}^ \circ }\cos {{10}^ \circ } - \cos {{30}^ \circ }\sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right],\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
\[ = \dfrac{{4\sin \left( {{{30}^ \circ } - {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Solving it,
\[ = \dfrac{{4\sin {{20}^ \circ }}}{{\sin {{20}^ \circ }}}\]
$ = 4$
Therefore the correct option is D.
Note: To solve this question, trigonometric equations as well as the value of sine and cosine functions at particular angles should be remembered. Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles.
Formula used: $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
$\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right]$
$\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
$\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Complete step by step solution:
Consider,
$\dfrac{1}{{\sin {{10}^ \circ }}} - \dfrac{{\sqrt 3 }}{{\cos {{10}^ \circ }}}$
\[ = \dfrac{{\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }}}{{\sin {{10}^ \circ }\cos {{10}^ \circ }}}\]
Multiply the numerator and denominator by $2,$
\[ = \dfrac{{2\left( {\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }} \right)}}{{2\left( {\sin {{10}^ \circ }\cos {{10}^ \circ }} \right)}}\]
Multiply and divide the numerator by $2,$
\[ = \dfrac{{2 \times 2 \times \dfrac{1}{2}\left( {\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
\[ = \dfrac{{4\left( {\dfrac{1}{2}\cos {{10}^ \circ } - \dfrac{{\sqrt 3 }}{2}\sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\]
Simplifying it,
\[ = \dfrac{{4\left( {\sin {{30}^ \circ }\cos {{10}^ \circ } - \cos {{30}^ \circ }\sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right],\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
\[ = \dfrac{{4\sin \left( {{{30}^ \circ } - {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Solving it,
\[ = \dfrac{{4\sin {{20}^ \circ }}}{{\sin {{20}^ \circ }}}\]
$ = 4$
Therefore the correct option is D.
Note: To solve this question, trigonometric equations as well as the value of sine and cosine functions at particular angles should be remembered. Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

