
What is the value of $\dfrac{1}{{\sin {{10}^ \circ }}} - \dfrac{{\sqrt 3 }}{{\cos {{10}^ \circ }}} = $
A. $0$
B. $1$
C. $2$
D. $4$
Answer
218.1k+ views
Hint: In order to solve this type of question, first we will consider the given equation. Then, we will simplify it by using multiplication and division. Next, we will apply suitable trigonometric identities ($\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$ and $\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$) in the equation formed and simplify it further in order to get the desired answer.
Formula used: $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
$\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right]$
$\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
$\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Complete step by step solution:
Consider,
$\dfrac{1}{{\sin {{10}^ \circ }}} - \dfrac{{\sqrt 3 }}{{\cos {{10}^ \circ }}}$
\[ = \dfrac{{\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }}}{{\sin {{10}^ \circ }\cos {{10}^ \circ }}}\]
Multiply the numerator and denominator by $2,$
\[ = \dfrac{{2\left( {\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }} \right)}}{{2\left( {\sin {{10}^ \circ }\cos {{10}^ \circ }} \right)}}\]
Multiply and divide the numerator by $2,$
\[ = \dfrac{{2 \times 2 \times \dfrac{1}{2}\left( {\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
\[ = \dfrac{{4\left( {\dfrac{1}{2}\cos {{10}^ \circ } - \dfrac{{\sqrt 3 }}{2}\sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\]
Simplifying it,
\[ = \dfrac{{4\left( {\sin {{30}^ \circ }\cos {{10}^ \circ } - \cos {{30}^ \circ }\sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right],\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
\[ = \dfrac{{4\sin \left( {{{30}^ \circ } - {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Solving it,
\[ = \dfrac{{4\sin {{20}^ \circ }}}{{\sin {{20}^ \circ }}}\]
$ = 4$
Therefore the correct option is D.
Note: To solve this question, trigonometric equations as well as the value of sine and cosine functions at particular angles should be remembered. Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles.
Formula used: $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
$\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right]$
$\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
$\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Complete step by step solution:
Consider,
$\dfrac{1}{{\sin {{10}^ \circ }}} - \dfrac{{\sqrt 3 }}{{\cos {{10}^ \circ }}}$
\[ = \dfrac{{\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }}}{{\sin {{10}^ \circ }\cos {{10}^ \circ }}}\]
Multiply the numerator and denominator by $2,$
\[ = \dfrac{{2\left( {\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }} \right)}}{{2\left( {\sin {{10}^ \circ }\cos {{10}^ \circ }} \right)}}\]
Multiply and divide the numerator by $2,$
\[ = \dfrac{{2 \times 2 \times \dfrac{1}{2}\left( {\cos {{10}^ \circ } - \sqrt 3 \sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because 2\sin \theta \cos \theta = \sin 2\theta } \right]$
\[ = \dfrac{{4\left( {\dfrac{1}{2}\cos {{10}^ \circ } - \dfrac{{\sqrt 3 }}{2}\sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\]
Simplifying it,
\[ = \dfrac{{4\left( {\sin {{30}^ \circ }\cos {{10}^ \circ } - \cos {{30}^ \circ }\sin {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because \sin {{30}^ \circ } = \dfrac{1}{2}} \right],\left[ {\because \cos {{30}^ \circ } = \dfrac{{\sqrt 3 }}{2}} \right]$
\[ = \dfrac{{4\sin \left( {{{30}^ \circ } - {{10}^ \circ }} \right)}}{{\sin {{20}^ \circ }}}\] $\left[ {\because \sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B} \right]$
Solving it,
\[ = \dfrac{{4\sin {{20}^ \circ }}}{{\sin {{20}^ \circ }}}\]
$ = 4$
Therefore the correct option is D.
Note: To solve this question, trigonometric equations as well as the value of sine and cosine functions at particular angles should be remembered. Trigonometric equation is an equation involving one or more trigonometric ratios of unknown angles.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

