
Two wires of the same material (young’s modulus Y) and same length L but radii R and 2R respectively are joined end to end and a weight W is suspended from the combination as shown in the figure. The elastic potential energy in the system in equilibrium is:

A) $\dfrac{{3{W^2}L}}{{4\pi {R^2}Y}}$.
B) $\dfrac{{3{W^2}L}}{{8\pi {R^2}Y}}$.
C) $\dfrac{{5{W^2}L}}{{8\pi {R^2}Y}}$.
D) $\dfrac{{{W^2}L}}{{\pi {R^2}Y}}$.
Answer
232.8k+ views
Hint: The potential energy is the energy which is saved inside the wire and is caused due to the elongation of the wire. The young’s modulus of a material is defined as the ratio of the stress and strain and it is constant till the proportional limit.
Formula used: The formula of the potential energy is given by,
$ \Rightarrow E = \dfrac{{{F^2}L}}{{2AY}}$
Where force is F, the original length is L, the area is A and Young’s modulus is Y.
Complete step by step solution:
It is given in the problem that the two wires of the same material (young’s modulus Y) and same length L but radii R and 2R respectively are joined end to end and a weight W is suspended from the combination and we need to find the elastic potential energy in the system in equilibrium condition.
The formula of the potential energy is given by,
$ \Rightarrow E = \dfrac{{{F^2}L}}{{2AY}}$
Where force is F, the original length is L, the area is A and Young’s modulus is Y.
The potential energy of the wire is equal to,
$ \Rightarrow E = \dfrac{{{F^2}L}}{{2AY}}$
The elongation is taking place in the two parts of the wires.
The potential energy of the system is equal to,
$ \Rightarrow E = \dfrac{{{W^2}L}}{{2{A_1}Y}} + \dfrac{{{W^2}L}}{{2{A_2}Y}}$
$ \Rightarrow E = \dfrac{{{W^2}L}}{{2\left( {\pi {R^2}} \right)Y}} + \dfrac{{{W^2}L}}{{2\pi {{\left( {2R} \right)}^2}Y}}$
$ \Rightarrow E = \dfrac{{{W^2}L}}{{2\pi {R^2}Y}} + \dfrac{{{W^2}L}}{{8\pi {R^2}Y}}$
$ \Rightarrow E = \dfrac{{2{W^2}L + {W^2}L}}{{8\pi {R^2}Y}}$
$ \Rightarrow E = \dfrac{{3{W^2}L}}{{8\pi {R^2}Y}}$.
The potential energy of the wire is equal to $E = \dfrac{{3{W^2}L}}{{8\pi {R^2}Y}}$. The correct option for this problem is option B.
Note: The students are advised to understand and remember the formula of the potential energy of the wire as it is very useful in solving these kinds of problems. The change of the length happens due to the applied force or the load due to weight.
Formula used: The formula of the potential energy is given by,
$ \Rightarrow E = \dfrac{{{F^2}L}}{{2AY}}$
Where force is F, the original length is L, the area is A and Young’s modulus is Y.
Complete step by step solution:
It is given in the problem that the two wires of the same material (young’s modulus Y) and same length L but radii R and 2R respectively are joined end to end and a weight W is suspended from the combination and we need to find the elastic potential energy in the system in equilibrium condition.
The formula of the potential energy is given by,
$ \Rightarrow E = \dfrac{{{F^2}L}}{{2AY}}$
Where force is F, the original length is L, the area is A and Young’s modulus is Y.
The potential energy of the wire is equal to,
$ \Rightarrow E = \dfrac{{{F^2}L}}{{2AY}}$
The elongation is taking place in the two parts of the wires.
The potential energy of the system is equal to,
$ \Rightarrow E = \dfrac{{{W^2}L}}{{2{A_1}Y}} + \dfrac{{{W^2}L}}{{2{A_2}Y}}$
$ \Rightarrow E = \dfrac{{{W^2}L}}{{2\left( {\pi {R^2}} \right)Y}} + \dfrac{{{W^2}L}}{{2\pi {{\left( {2R} \right)}^2}Y}}$
$ \Rightarrow E = \dfrac{{{W^2}L}}{{2\pi {R^2}Y}} + \dfrac{{{W^2}L}}{{8\pi {R^2}Y}}$
$ \Rightarrow E = \dfrac{{2{W^2}L + {W^2}L}}{{8\pi {R^2}Y}}$
$ \Rightarrow E = \dfrac{{3{W^2}L}}{{8\pi {R^2}Y}}$.
The potential energy of the wire is equal to $E = \dfrac{{3{W^2}L}}{{8\pi {R^2}Y}}$. The correct option for this problem is option B.
Note: The students are advised to understand and remember the formula of the potential energy of the wire as it is very useful in solving these kinds of problems. The change of the length happens due to the applied force or the load due to weight.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

