
Two springs of constant\[{k_1}\] and \[{k_2}\] are joined in series. The effective spring constant of the combination is given by
A. \[\sqrt {{k_1}{k_2}} \\ \]
B. \[\dfrac{{{k_1} + {k_2}}}{2} \\ \]
C. \[{k_1} + {k_2} \\ \]
D. \[\dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}}\]
Answer
232.8k+ views
Hint: According to Hooke’ law spring force is given by \[F = - kx\], where x is deformation of spring which can be mathematically calculated from equation \[x = - \left( {\dfrac{F}{k}} \right)\].
Formula used :
\[F = - kx\]
Here, F = Spring force, K = Spring constant and x = Deformation in spring.
Complete step by step solution:
Two springs of constant \[{k_1}\] and \[{k_2}\] are joined in series, we have to calculate the effective constant of the combination. From Hooke’s law spring force for constant k and deformation x is given by,
\[F = - kx\,......(1)\]
Let the deformation in springs in series combination be \[{x_1}\] and \[{x_2}\] then spring force \[{F_1}\] and \[{F_2}\] will be,
\[{F_1} = - {k_1}{x_1}\] and \[{F_1} = - {k_1}{x_2}\]
Then we have, \[{x_1} = - \dfrac{{{F_1}}}{{{k_1}}}\] and \[{x_2} = - \dfrac{{{F_1}}}{{{k_1}}}\].
In a series combination of two or more springs deformation of each spring may be different but total deformation of the combination is the sum of individual deformations of springs.
Therefore for given series combination of springs, deformation of combination(x) will be,
\[x = {x_1} + {x_2}\]
Substituting the values of \[{x_1}\]and\[{x_2}\]in above equation we get,
\[x = \left( { - \dfrac{{{F_1}}}{{{k_1}}}} \right) + \left( { - \dfrac{{{F_2}}}{{{k_2}}}} \right)\,.....(2)\]
As in series combination of springs force on each spring is same therefore, \[{F_1} = {F_2}\]
Let \[{F_1} = {F_2} = F\]
Then, equation (2) can be rewritten as,
\[x = - F\left( {\dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}}} \right)..........(3)\]
From Hooke’s law, force on combination of spring of constant will be,
\[F = - kx\]
Then \[x = - \dfrac{F}{{{k_{eff}}}}\,.....(4)\]
On comparing equation (3) and (4) we get,
\[\dfrac{1}{{{k_{eff}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}}\]
Hence, \[{k_{eff}} = \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}}\]
Therefore, option D is the correct answer.
Note: In series or parallel combination of two or more springs even when the spring constants are different for each individual but they act as one.
Formula used :
\[F = - kx\]
Here, F = Spring force, K = Spring constant and x = Deformation in spring.
Complete step by step solution:
Two springs of constant \[{k_1}\] and \[{k_2}\] are joined in series, we have to calculate the effective constant of the combination. From Hooke’s law spring force for constant k and deformation x is given by,
\[F = - kx\,......(1)\]
Let the deformation in springs in series combination be \[{x_1}\] and \[{x_2}\] then spring force \[{F_1}\] and \[{F_2}\] will be,
\[{F_1} = - {k_1}{x_1}\] and \[{F_1} = - {k_1}{x_2}\]
Then we have, \[{x_1} = - \dfrac{{{F_1}}}{{{k_1}}}\] and \[{x_2} = - \dfrac{{{F_1}}}{{{k_1}}}\].
In a series combination of two or more springs deformation of each spring may be different but total deformation of the combination is the sum of individual deformations of springs.
Therefore for given series combination of springs, deformation of combination(x) will be,
\[x = {x_1} + {x_2}\]
Substituting the values of \[{x_1}\]and\[{x_2}\]in above equation we get,
\[x = \left( { - \dfrac{{{F_1}}}{{{k_1}}}} \right) + \left( { - \dfrac{{{F_2}}}{{{k_2}}}} \right)\,.....(2)\]
As in series combination of springs force on each spring is same therefore, \[{F_1} = {F_2}\]
Let \[{F_1} = {F_2} = F\]
Then, equation (2) can be rewritten as,
\[x = - F\left( {\dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}}} \right)..........(3)\]
From Hooke’s law, force on combination of spring of constant will be,
\[F = - kx\]
Then \[x = - \dfrac{F}{{{k_{eff}}}}\,.....(4)\]
On comparing equation (3) and (4) we get,
\[\dfrac{1}{{{k_{eff}}}} = \dfrac{1}{{{k_1}}} + \dfrac{1}{{{k_2}}}\]
Hence, \[{k_{eff}} = \dfrac{{{k_1}{k_2}}}{{{k_1} + {k_2}}}\]
Therefore, option D is the correct answer.
Note: In series or parallel combination of two or more springs even when the spring constants are different for each individual but they act as one.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

