
Two radiations of photons energies 1eV and \[2.5eV\] successively illuminate a photosensitive metallic surface of work function \[0.5eV\]. The ratio of the maximum speeds of the emitted electrons is:
(A) 1:2
(B) 1:1
(C) 1:5
(D) 1:4
Answer
225k+ views
Hint: The maximum kinetic energy of the electrons is equal to the energy of the radiations reduced by the work function (i.e. energy of photon minus work function of metal). Kinetic energy is proportional to the square of the speeds,
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\] is the maximum kinetic energy of the ejected electrons, \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Complete Step-by-Step Solution:
Two different radiations are said to illuminate a metallic surface of a particular work function, we are to determine the ratio of the kinetic energy of the electrons ejected from the metal.
To do so, we must at first calculate the kinetic energy of the photons in the individual cases.
The formula for the kinetic energy is given by
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\]where \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Hence, for the first radiation, we have
\[K{E_{\max 1}} = 1eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 1}} = 0.5eV\]
For the second radiation, we have,
\[K{E_{\max 2}} = 2.5eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 2}} = 2eV\]
Hence, the ratio will be given as
\[\dfrac{{K{E_{\max 1}}}}{{K{E_{\max 2}}}} = \dfrac{{0.5}}{2} = \dfrac{1}{4}\]
But Kinetic energy is proportional to the square of the speeds, then
\[\dfrac{{{v_1}^2}}{{{v_2}^2}} = \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{1}{4}} = \dfrac{1}{2}\]
Hence, the ratio of one to the other is
\[{v_1}:{v_2} = 1:2\]
Thus, the correct option is A
Note: We need to observe that to find the ratio of the two kinetic energies, the unit does not have to be converted to SI to get the proper answer. This is because the conversion factor will end up cancelling out, and the values only will matter. Similarly, for replacing kinetic energy with just the square of the speeds, the constants will cancel out anyway.
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\] is the maximum kinetic energy of the ejected electrons, \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Complete Step-by-Step Solution:
Two different radiations are said to illuminate a metallic surface of a particular work function, we are to determine the ratio of the kinetic energy of the electrons ejected from the metal.
To do so, we must at first calculate the kinetic energy of the photons in the individual cases.
The formula for the kinetic energy is given by
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\]where \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Hence, for the first radiation, we have
\[K{E_{\max 1}} = 1eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 1}} = 0.5eV\]
For the second radiation, we have,
\[K{E_{\max 2}} = 2.5eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 2}} = 2eV\]
Hence, the ratio will be given as
\[\dfrac{{K{E_{\max 1}}}}{{K{E_{\max 2}}}} = \dfrac{{0.5}}{2} = \dfrac{1}{4}\]
But Kinetic energy is proportional to the square of the speeds, then
\[\dfrac{{{v_1}^2}}{{{v_2}^2}} = \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{1}{4}} = \dfrac{1}{2}\]
Hence, the ratio of one to the other is
\[{v_1}:{v_2} = 1:2\]
Thus, the correct option is A
Note: We need to observe that to find the ratio of the two kinetic energies, the unit does not have to be converted to SI to get the proper answer. This is because the conversion factor will end up cancelling out, and the values only will matter. Similarly, for replacing kinetic energy with just the square of the speeds, the constants will cancel out anyway.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

