
Two projectiles of the same mass have their maximum kinetic energies in ratio \[4:1\] and the ratio of their maximum heights is also $4:1$ . Then what is the ratio of their ranges?
(A) $2:1$
(B) $4:1$
(C) $8:1$
(D) $16:1$
Answer
140.1k+ views
Hint We are given here with the kinetic energy ratio and the ratio of maximum height and we are asked to find out the ratio of their ranges. So we will find the ratio of their velocities and angles of the projectile and use the formula for range.
Formula used
\[{E_k} = \dfrac{1}{2}m{u^2}\]
Where, \[{E_k}\] is the kinetic energy of the projectile, $m$ is the mass of the projectile and $u$ is the initial velocity of the projectile.
\[H = \dfrac{{{u^2}si{n^2}\theta }}{{2g}}\]
Where, \[H\] is the maximum height of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
\[R = \dfrac{{{u^2}sin2\theta }}{g}\]
Where, $R$ is the range of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
Complete Step By Step Solution
We are given,
\[\dfrac{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{{E_{k1}}}}{{{E_{k2}}}} = \dfrac{4}{1}\]
Thus, putting in the formula for kinetic energy, we can say
\[\dfrac{{\dfrac{1}{2}m{u_1}^2}}{{\dfrac{1}{2}m{u_2}^2}} = \dfrac{4}{1}\]
Thus, after cancellation, we get
\[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\]
Thus, we get
\[\dfrac{{{u_1}}}{{{u_2}}} = \dfrac{2}{1} \Rightarrow {u_1}:{u_2} = 2:1\]
Now,
\[\dfrac{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{\dfrac{{{u_1}^2si{n^2}{\theta _1}}}{{2g}}}}{{\dfrac{{{u_2}^2si{n^2}{\theta _2}}}{{2g}}}} = \dfrac{4}{1}\]
After cancellation and Putting in \[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\] , we get
\[\dfrac{{si{n^2}{\theta _1}}}{{si{n^2}{\theta _2}}} = \dfrac{1}{1}\]
Thus, we can say
${\theta _1} = {\theta _2}$
Now,
$\dfrac{{Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile\;}}{{Range{\text{ }}of{\text{ }}the{\text{ second }}projectile\;}} = \dfrac{{\dfrac{{{u_1}^2\sin 2{\theta _1}}}{g}}}{{\dfrac{{{u_2}^2\sin 2{\theta _2}}}{g}}}$
After cancellation and putting in $\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}$ and $\dfrac{{{\theta _1}}}{{{\theta _2}}} = \dfrac{1}{1}$, we get\[Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile:{\text{ }}Range{\text{ }}of{\text{ }}the{\text{ }}second{\text{ }}projectile = 4:1\]
Hence, the correct option is (B).
Note We evaluated the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] and $\dfrac{{{u_1}^2}}{{{u_2}^2}}$. This was for being more precise with the answer. Moreover, the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] could$ \pm \dfrac{2}{1}$. But the value of velocity of a projectile cannot be negative. Thus, we took the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] to be $\dfrac{2}{1}$.
Formula used
\[{E_k} = \dfrac{1}{2}m{u^2}\]
Where, \[{E_k}\] is the kinetic energy of the projectile, $m$ is the mass of the projectile and $u$ is the initial velocity of the projectile.
\[H = \dfrac{{{u^2}si{n^2}\theta }}{{2g}}\]
Where, \[H\] is the maximum height of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
\[R = \dfrac{{{u^2}sin2\theta }}{g}\]
Where, $R$ is the range of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
Complete Step By Step Solution
We are given,
\[\dfrac{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{{E_{k1}}}}{{{E_{k2}}}} = \dfrac{4}{1}\]
Thus, putting in the formula for kinetic energy, we can say
\[\dfrac{{\dfrac{1}{2}m{u_1}^2}}{{\dfrac{1}{2}m{u_2}^2}} = \dfrac{4}{1}\]
Thus, after cancellation, we get
\[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\]
Thus, we get
\[\dfrac{{{u_1}}}{{{u_2}}} = \dfrac{2}{1} \Rightarrow {u_1}:{u_2} = 2:1\]
Now,
\[\dfrac{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{\dfrac{{{u_1}^2si{n^2}{\theta _1}}}{{2g}}}}{{\dfrac{{{u_2}^2si{n^2}{\theta _2}}}{{2g}}}} = \dfrac{4}{1}\]
After cancellation and Putting in \[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\] , we get
\[\dfrac{{si{n^2}{\theta _1}}}{{si{n^2}{\theta _2}}} = \dfrac{1}{1}\]
Thus, we can say
${\theta _1} = {\theta _2}$
Now,
$\dfrac{{Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile\;}}{{Range{\text{ }}of{\text{ }}the{\text{ second }}projectile\;}} = \dfrac{{\dfrac{{{u_1}^2\sin 2{\theta _1}}}{g}}}{{\dfrac{{{u_2}^2\sin 2{\theta _2}}}{g}}}$
After cancellation and putting in $\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}$ and $\dfrac{{{\theta _1}}}{{{\theta _2}}} = \dfrac{1}{1}$, we get\[Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile:{\text{ }}Range{\text{ }}of{\text{ }}the{\text{ }}second{\text{ }}projectile = 4:1\]
Hence, the correct option is (B).
Note We evaluated the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] and $\dfrac{{{u_1}^2}}{{{u_2}^2}}$. This was for being more precise with the answer. Moreover, the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] could$ \pm \dfrac{2}{1}$. But the value of velocity of a projectile cannot be negative. Thus, we took the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] to be $\dfrac{2}{1}$.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Physics Average Value and RMS Value JEE Main 2025

Charging and Discharging of Capacitor

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Collision - Important Concepts and Tips for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane

NCERT Solutions for Class 11 Physics Chapter 14 Waves

A spherical ball of mass 20kg is stationary at the class 11 physics JEE_Main

A water pump of 1 horse power is required to flow water class 11 physics JEE_Main

JEE Advanced 2025 Revision Notes for Physics on Modern Physics
