
Two perfectly elastic particles P and Q of equal mass travelling along the line joining them with velocities \[15{\text{ }}m/sec\] and \[10{\text{ }}m/sec\]. After collision, their velocities respectively (in m/sec) will be.
A. $0,25$
B. $5,20$
C. $10,15$
D. $20,5$
Answer
161.7k+ views
Hint:In this question, we are given that there are two perfectly elastic particles P and Q with the initial velocities \[15{\text{ }}m/sec\] and \[10{\text{ }}m/sec\]. Also, the masses of both the particles are the same. We have to calculate their velocities after collision. To calculate the velocities, we’ll use the formula of velocities after collision (elastic bodies).
Formula used:
When two bodies collides (elastically) then the velocities are;
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}}$, ${v_2} = \dfrac{{\left( {{m_2} - {m_1}} \right){u_2} + 2{m_1}{u_1}}}{{{m_1} + {m_2}}}$
Here, ${m_1},{m_2}$ and ${u_1},{u_2}$ are the masses and initial velocities of both the bodies respectively.
Complete step by step solution:
Given that,
Velocities of particles P and Q are \[15{\text{ }}m/sec\] and \[10{\text{ }}m/sec\] respectively.
Initial velocity of P, ${u_1} = 15{\text{ }}m/sec$
Initial velocity of Q, ${u_2} = 10{\text{ }}m/sec$
The Masses of the particles P and Q are the same.
Therefore, let ${m_1} = {m_2} = m$
After collision their velocities will be,
Using the formula,
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}} \\ $
$\Rightarrow {v_2} = \dfrac{{\left( {{m_2} - {m_1}} \right){u_2} + 2{m_1}{u_1}}}{{{m_1} + {m_2}}} \\ $
Put the value of ${u_1} = 15{\text{ }}m/sec$, ${u_2} = 10{\text{ }}m/sec$ and ${m_1} = {m_2} = m$
It will be, velocity of P, ${v_1} = \dfrac{{\left( {m - m} \right)15 + 2m\left( {10} \right)}}{{m + m}}$
${v_1} = \dfrac{{20m}}{{2m}}$
$\Rightarrow {v_1} = 10{\text{ }}m/sec$
And Velocity of Q,
${v_2} = \dfrac{{\left( {m - m} \right)10 + 2m\left( {15} \right)}}{{m + m}} \\ $
$\Rightarrow {v_2} = \dfrac{{30m}}{{2m}} \\ $
$\therefore {v_2} = 15{\text{ }}m/sec$
Hence, option C is the correct answer.
Note: To solve such problems, one should always remember the concept of collision of elastic bodies that if the mass is the same and the bodies are perfectly elastic then after collision their velocities get interchanged. Consider the two particles or bodies of equal mass moving in opposite directions at the same velocity. In this case, both bodies come to rest after the collision, implying that no velocity exchange occurs.
Formula used:
When two bodies collides (elastically) then the velocities are;
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}}$, ${v_2} = \dfrac{{\left( {{m_2} - {m_1}} \right){u_2} + 2{m_1}{u_1}}}{{{m_1} + {m_2}}}$
Here, ${m_1},{m_2}$ and ${u_1},{u_2}$ are the masses and initial velocities of both the bodies respectively.
Complete step by step solution:
Given that,
Velocities of particles P and Q are \[15{\text{ }}m/sec\] and \[10{\text{ }}m/sec\] respectively.
Initial velocity of P, ${u_1} = 15{\text{ }}m/sec$
Initial velocity of Q, ${u_2} = 10{\text{ }}m/sec$
The Masses of the particles P and Q are the same.
Therefore, let ${m_1} = {m_2} = m$
After collision their velocities will be,
Using the formula,
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}} \\ $
$\Rightarrow {v_2} = \dfrac{{\left( {{m_2} - {m_1}} \right){u_2} + 2{m_1}{u_1}}}{{{m_1} + {m_2}}} \\ $
Put the value of ${u_1} = 15{\text{ }}m/sec$, ${u_2} = 10{\text{ }}m/sec$ and ${m_1} = {m_2} = m$
It will be, velocity of P, ${v_1} = \dfrac{{\left( {m - m} \right)15 + 2m\left( {10} \right)}}{{m + m}}$
${v_1} = \dfrac{{20m}}{{2m}}$
$\Rightarrow {v_1} = 10{\text{ }}m/sec$
And Velocity of Q,
${v_2} = \dfrac{{\left( {m - m} \right)10 + 2m\left( {15} \right)}}{{m + m}} \\ $
$\Rightarrow {v_2} = \dfrac{{30m}}{{2m}} \\ $
$\therefore {v_2} = 15{\text{ }}m/sec$
Hence, option C is the correct answer.
Note: To solve such problems, one should always remember the concept of collision of elastic bodies that if the mass is the same and the bodies are perfectly elastic then after collision their velocities get interchanged. Consider the two particles or bodies of equal mass moving in opposite directions at the same velocity. In this case, both bodies come to rest after the collision, implying that no velocity exchange occurs.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
