
Two perfectly elastic particles P and Q of equal mass travelling along the line joining them with velocities \[15{\text{ }}m/sec\] and \[10{\text{ }}m/sec\]. After collision, their velocities respectively (in m/sec) will be.
A. $0,25$
B. $5,20$
C. $10,15$
D. $20,5$
Answer
216k+ views
Hint:In this question, we are given that there are two perfectly elastic particles P and Q with the initial velocities \[15{\text{ }}m/sec\] and \[10{\text{ }}m/sec\]. Also, the masses of both the particles are the same. We have to calculate their velocities after collision. To calculate the velocities, we’ll use the formula of velocities after collision (elastic bodies).
Formula used:
When two bodies collides (elastically) then the velocities are;
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}}$, ${v_2} = \dfrac{{\left( {{m_2} - {m_1}} \right){u_2} + 2{m_1}{u_1}}}{{{m_1} + {m_2}}}$
Here, ${m_1},{m_2}$ and ${u_1},{u_2}$ are the masses and initial velocities of both the bodies respectively.
Complete step by step solution:
Given that,
Velocities of particles P and Q are \[15{\text{ }}m/sec\] and \[10{\text{ }}m/sec\] respectively.
Initial velocity of P, ${u_1} = 15{\text{ }}m/sec$
Initial velocity of Q, ${u_2} = 10{\text{ }}m/sec$
The Masses of the particles P and Q are the same.
Therefore, let ${m_1} = {m_2} = m$
After collision their velocities will be,
Using the formula,
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}} \\ $
$\Rightarrow {v_2} = \dfrac{{\left( {{m_2} - {m_1}} \right){u_2} + 2{m_1}{u_1}}}{{{m_1} + {m_2}}} \\ $
Put the value of ${u_1} = 15{\text{ }}m/sec$, ${u_2} = 10{\text{ }}m/sec$ and ${m_1} = {m_2} = m$
It will be, velocity of P, ${v_1} = \dfrac{{\left( {m - m} \right)15 + 2m\left( {10} \right)}}{{m + m}}$
${v_1} = \dfrac{{20m}}{{2m}}$
$\Rightarrow {v_1} = 10{\text{ }}m/sec$
And Velocity of Q,
${v_2} = \dfrac{{\left( {m - m} \right)10 + 2m\left( {15} \right)}}{{m + m}} \\ $
$\Rightarrow {v_2} = \dfrac{{30m}}{{2m}} \\ $
$\therefore {v_2} = 15{\text{ }}m/sec$
Hence, option C is the correct answer.
Note: To solve such problems, one should always remember the concept of collision of elastic bodies that if the mass is the same and the bodies are perfectly elastic then after collision their velocities get interchanged. Consider the two particles or bodies of equal mass moving in opposite directions at the same velocity. In this case, both bodies come to rest after the collision, implying that no velocity exchange occurs.
Formula used:
When two bodies collides (elastically) then the velocities are;
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}}$, ${v_2} = \dfrac{{\left( {{m_2} - {m_1}} \right){u_2} + 2{m_1}{u_1}}}{{{m_1} + {m_2}}}$
Here, ${m_1},{m_2}$ and ${u_1},{u_2}$ are the masses and initial velocities of both the bodies respectively.
Complete step by step solution:
Given that,
Velocities of particles P and Q are \[15{\text{ }}m/sec\] and \[10{\text{ }}m/sec\] respectively.
Initial velocity of P, ${u_1} = 15{\text{ }}m/sec$
Initial velocity of Q, ${u_2} = 10{\text{ }}m/sec$
The Masses of the particles P and Q are the same.
Therefore, let ${m_1} = {m_2} = m$
After collision their velocities will be,
Using the formula,
${v_1} = \dfrac{{\left( {{m_1} - {m_2}} \right){u_1} + 2{m_2}{u_2}}}{{{m_1} + {m_2}}} \\ $
$\Rightarrow {v_2} = \dfrac{{\left( {{m_2} - {m_1}} \right){u_2} + 2{m_1}{u_1}}}{{{m_1} + {m_2}}} \\ $
Put the value of ${u_1} = 15{\text{ }}m/sec$, ${u_2} = 10{\text{ }}m/sec$ and ${m_1} = {m_2} = m$
It will be, velocity of P, ${v_1} = \dfrac{{\left( {m - m} \right)15 + 2m\left( {10} \right)}}{{m + m}}$
${v_1} = \dfrac{{20m}}{{2m}}$
$\Rightarrow {v_1} = 10{\text{ }}m/sec$
And Velocity of Q,
${v_2} = \dfrac{{\left( {m - m} \right)10 + 2m\left( {15} \right)}}{{m + m}} \\ $
$\Rightarrow {v_2} = \dfrac{{30m}}{{2m}} \\ $
$\therefore {v_2} = 15{\text{ }}m/sec$
Hence, option C is the correct answer.
Note: To solve such problems, one should always remember the concept of collision of elastic bodies that if the mass is the same and the bodies are perfectly elastic then after collision their velocities get interchanged. Consider the two particles or bodies of equal mass moving in opposite directions at the same velocity. In this case, both bodies come to rest after the collision, implying that no velocity exchange occurs.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

