
Two men are walking along a horizontal straight line in the same direction. The man in front walks at a speed of $1.0m{s^{ - 1}}$ and the man behind walks at a speed of $2.0m{s^{ - 1}}$. A third man is standing at a height $12m$ above the same horizontal line such that all three men are in a vertical plane. The two men walking are blowing identical whistles which emit a sound of frequency $1430Hz$. The speed of sound in air is $330m{s^{ - 1}}$. At the instant, when the moving men are $10m$ apart, the stationary man is equidistant from them. The frequency of beats in $Hz$ heard by the stationary man at this instant, is ___________.
Answer
232.8k+ views
Hint: Beat frequency is the difference of frequencies of two waves of slightly different frequencies. The two frequencies need to be in the same medium.
Complete step by step answer:
According to Doppler’s Effect, apparent frequency $\left( {\nu '} \right)$ can be calculated by,
\[\upsilon ' = \left( {\dfrac{{v - {v_O}}}{{v - {v_S}}}} \right)\upsilon \]
Where, $v = $ speed of sound in medium
${v_O} = $ speed of observer
${v_S} = $ speed of source
$\upsilon = $ real frequency
The component of velocity which the observers comprehend are,
$\Rightarrow {v_A} = {v_A}\cos \theta $
$\Rightarrow {v_B} = {v_B}\cos \theta $
The apparent frequency of sound from $A$ as heard by the observer,
$\Rightarrow {\upsilon '_A} = \left( {\dfrac{v}{{v - {v_A}}}} \right)\upsilon $
$
\Rightarrow {{\upsilon '}_A} = \left( {\dfrac{{330}}{{330 - 1\cos \theta }}} \right)1430 \\
\Rightarrow {{\upsilon '}_A} = \left( {\dfrac{1}{{1 - \dfrac{{\cos \theta }}{{330}}}}} \right)1430 \\
\Rightarrow {{\upsilon '}_A} = \left( {1 - \dfrac{{\cos \theta }}{{330}}} \right)1430 $
The apparent frequency of sound from $B$ as heard from observer,
$
\Rightarrow {{\upsilon '}_B} = \left( {\dfrac{v}{{v - {v_B}}}} \right)\upsilon \\
\Rightarrow {{\upsilon '}_B} = \left( {\dfrac{{330}}{{330 - 2\cos \theta }}} \right)1430 \\
\Rightarrow {{\upsilon '}_B} = \left( {\dfrac{1}{{1 - \dfrac{{2\cos \theta }}{{330}}}}} \right)1430 \\
\Rightarrow {{\upsilon '}_B} = \left( {1 + \dfrac{{2\cos \theta }}{{330}}} \right)1430 $
So, the beat frequency $\left( {\Delta \upsilon } \right)$ can be calculated by,
\[
\Rightarrow \Delta \upsilon = \left| {{{\upsilon '}_A} - {{\upsilon '}_B}} \right| \\
\Rightarrow \Delta \upsilon = \left[ {1430\left( {1 + \dfrac{{2\cos \theta }}{{330}}} \right)} \right] - \left[ {1430\left( {1 - \dfrac{{\cos \theta }}{{330}}} \right)} \right] \\
\Rightarrow \Delta \upsilon = 1430\left( {\dfrac{{3\cos \theta }}{{330}}} \right) \\
\Rightarrow \Delta \upsilon = 13\cos \theta \\
\Rightarrow \Delta \upsilon = 13 \times \dfrac{5}{{13}} \\
\therefore \Delta \upsilon = 5Hz \]
Therefore the beat frequency is $5Hz$.
Note: Whenever there is relative motion between a source sound and the observer, the frequency of sound heard by the observer is different from the actual frequency of the sound emitted by the source. This is known as Doppler’s Effect.
Complete step by step answer:
According to Doppler’s Effect, apparent frequency $\left( {\nu '} \right)$ can be calculated by,
\[\upsilon ' = \left( {\dfrac{{v - {v_O}}}{{v - {v_S}}}} \right)\upsilon \]
Where, $v = $ speed of sound in medium
${v_O} = $ speed of observer
${v_S} = $ speed of source
$\upsilon = $ real frequency
The component of velocity which the observers comprehend are,
$\Rightarrow {v_A} = {v_A}\cos \theta $
$\Rightarrow {v_B} = {v_B}\cos \theta $
The apparent frequency of sound from $A$ as heard by the observer,
$\Rightarrow {\upsilon '_A} = \left( {\dfrac{v}{{v - {v_A}}}} \right)\upsilon $
$
\Rightarrow {{\upsilon '}_A} = \left( {\dfrac{{330}}{{330 - 1\cos \theta }}} \right)1430 \\
\Rightarrow {{\upsilon '}_A} = \left( {\dfrac{1}{{1 - \dfrac{{\cos \theta }}{{330}}}}} \right)1430 \\
\Rightarrow {{\upsilon '}_A} = \left( {1 - \dfrac{{\cos \theta }}{{330}}} \right)1430 $
The apparent frequency of sound from $B$ as heard from observer,
$
\Rightarrow {{\upsilon '}_B} = \left( {\dfrac{v}{{v - {v_B}}}} \right)\upsilon \\
\Rightarrow {{\upsilon '}_B} = \left( {\dfrac{{330}}{{330 - 2\cos \theta }}} \right)1430 \\
\Rightarrow {{\upsilon '}_B} = \left( {\dfrac{1}{{1 - \dfrac{{2\cos \theta }}{{330}}}}} \right)1430 \\
\Rightarrow {{\upsilon '}_B} = \left( {1 + \dfrac{{2\cos \theta }}{{330}}} \right)1430 $
So, the beat frequency $\left( {\Delta \upsilon } \right)$ can be calculated by,
\[
\Rightarrow \Delta \upsilon = \left| {{{\upsilon '}_A} - {{\upsilon '}_B}} \right| \\
\Rightarrow \Delta \upsilon = \left[ {1430\left( {1 + \dfrac{{2\cos \theta }}{{330}}} \right)} \right] - \left[ {1430\left( {1 - \dfrac{{\cos \theta }}{{330}}} \right)} \right] \\
\Rightarrow \Delta \upsilon = 1430\left( {\dfrac{{3\cos \theta }}{{330}}} \right) \\
\Rightarrow \Delta \upsilon = 13\cos \theta \\
\Rightarrow \Delta \upsilon = 13 \times \dfrac{5}{{13}} \\
\therefore \Delta \upsilon = 5Hz \]
Therefore the beat frequency is $5Hz$.
Note: Whenever there is relative motion between a source sound and the observer, the frequency of sound heard by the observer is different from the actual frequency of the sound emitted by the source. This is known as Doppler’s Effect.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

