
Two masses M and m are attached to a vertical axis by weightless threads of combined length $l$. They are set in rotational motion in a horizontal plane about this axis with constant angular velocity ω. If the tensions in the threads are the same during motion , the distance of M from the axis is :
A. $\frac{Ml}{M+m}$
B. $\frac{ml}{M+m}$
C. $\frac{M+m}{M}l$
D. $\frac{M+m}{m}l$
Answer
161.4k+ views
Hint:Tension is a type of force that works in medium lengths , especially those that are flexible , such as rope or cord. Tension force remains a gravitational force.Tension by the force between these masses M and m will be equal as it is acting upon the same length of rope . Hence the individual tensions from the respective masses can be calculated and then can be equated to each other from the axis to get the desired value of the distance from the axis.
Formula used:
Complete answer:
Assuming the two masses are attached to a weightless threads in a vertical axis which are of some distance from each other. Let consider a point in between of the two masses from which the axis of rotational motion is done to be represented by O. Now as stated in the question it is making a rotation with an angular velocity of ω . Angular velocity is a velocity which describes the rate of change of angular position of a rotating body . Now let us take the distance between the mass M and the axis of rotation be x units. Also assume the tension in the thread be T. Then from the formula of tension
We have ,
Tension(T)=mass of the body ×distance from the axis of rotation×${{\omega }^{2}}$
Now it is given that the comvined length of the thread from the mass M to m is $l$.Since the
Distance between the axis of rotation and mass M body = x units
Then distance between the axis of rotation and mass m body= $l$-x units [∵ d(M)+d(m)= $l$]
∴ Tension due to mass M (T)= Mx${{\omega }^{2}}$
And tension due to mass m , T=m($l$-x) ${{\omega }^{2}}$
Since, Tension by the force between these masses M and m will be equal as it is acting upon the same length of rope . Hence the individual tensions from the respective masses can be calculated and then can be equated to each other from the axis to get the desired value of the distance from the axis.
This implies that, Mx${{\omega }^{2}}$=m($l$-x) ${{\omega }^{2}}$
$\Rightarrow $ Mx${{\omega }^{2}}$=m$l$${{\omega }^{2}}$- mx${{\omega }^{2}}$
$\Rightarrow $ Mx${{\omega }^{2}}$- mx${{\omega }^{2}}$=m$l$${{\omega }^{2}}$
$\Rightarrow $ x(M${{\omega }^{2}}$- m${{\omega }^{2}}$)= m$l$${{\omega }^{2}}$
$\Rightarrow $x= $\frac{ml}{M+m}$units
Thus, the correct option is option B.
Note:Tension from the same type of material is same only even after the different set of origin in a considered single frame of objects as it became balanced to each other . The formula of the tension should be remembered properly as it became quite different from question to question according to the situations and data provided in the question.
Formula used:
Complete answer:
Assuming the two masses are attached to a weightless threads in a vertical axis which are of some distance from each other. Let consider a point in between of the two masses from which the axis of rotational motion is done to be represented by O. Now as stated in the question it is making a rotation with an angular velocity of ω . Angular velocity is a velocity which describes the rate of change of angular position of a rotating body . Now let us take the distance between the mass M and the axis of rotation be x units. Also assume the tension in the thread be T. Then from the formula of tension
We have ,
Tension(T)=mass of the body ×distance from the axis of rotation×${{\omega }^{2}}$
Now it is given that the comvined length of the thread from the mass M to m is $l$.Since the
Distance between the axis of rotation and mass M body = x units
Then distance between the axis of rotation and mass m body= $l$-x units [∵ d(M)+d(m)= $l$]
∴ Tension due to mass M (T)= Mx${{\omega }^{2}}$
And tension due to mass m , T=m($l$-x) ${{\omega }^{2}}$
Since, Tension by the force between these masses M and m will be equal as it is acting upon the same length of rope . Hence the individual tensions from the respective masses can be calculated and then can be equated to each other from the axis to get the desired value of the distance from the axis.
This implies that, Mx${{\omega }^{2}}$=m($l$-x) ${{\omega }^{2}}$
$\Rightarrow $ Mx${{\omega }^{2}}$=m$l$${{\omega }^{2}}$- mx${{\omega }^{2}}$
$\Rightarrow $ Mx${{\omega }^{2}}$- mx${{\omega }^{2}}$=m$l$${{\omega }^{2}}$
$\Rightarrow $ x(M${{\omega }^{2}}$- m${{\omega }^{2}}$)= m$l$${{\omega }^{2}}$
$\Rightarrow $x= $\frac{ml}{M+m}$units
Thus, the correct option is option B.
Note:Tension from the same type of material is same only even after the different set of origin in a considered single frame of objects as it became balanced to each other . The formula of the tension should be remembered properly as it became quite different from question to question according to the situations and data provided in the question.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
