
Two lamps, one rated $40W$ at $220V$ and the other $60W$ at $220V$ , are connected in parallel to the electric supply at \[220V\].
(A) Calculate the current drawn from the electric supply.
(B) Calculate the total energy consumed by the two lamps together when they operate for one hour.
Answer
225k+ views
Hint: In order to solve this question, the knowledge of the calculation of required resistance that is the resultant resistance of circuit is important. This should be kept in mind that the formula for calculation of resultant resistance is different for parallel and series combination.
Complete step by step answer:
It is given in question that,
Power of ${1^{st}}$ lamp, ${P_1} = 40W$ and voltage of ${1^{st}}$ lamp, ${V_1} = 220V$
Power of ${2^{nd}}$ lamp, ${P_2} = 60W$ , voltage of ${2^{nd}}$ lamp , ${V_2} = 220V$
As we know that,
$P = \dfrac{{{V^2}}}{R}$
Where $P$ is the power, $V$ is the potential difference and $R$ is the resistance.
In terms of resistance we have,
$R = \dfrac{{{V^2}}}{P}$
So, the resistance of ${1^{st}}$ lamp, would be given as,
${R_1} = \dfrac{{V_1^2}}{{{P_1}}}$
Putting the values of the respective quantities in the above equation we have,
${R_1} = \dfrac{{{{(220)}^2}}}{{60}}$
On Solving we have,
${R_1} = \dfrac{{2420}}{3}\Omega $
Now the resistance of the second lamp would be calculated the same way and would be given as,
${R_2} = \dfrac{{V_2^2}}{{{P_2}}}$
Putting the values of the respective quantities in the above equation we have,
${R_2} = \dfrac{{{{(220)}^2}}}{{40}}$
On Solving we have,
${R_1} = 1210\Omega $
(A) In the a part of the question both the lamps are in parallel connection,
So, the required resistance would be given by,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$
Putting the respective values we have,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{3}{{2420}} + \dfrac{1}{{1210}}$
On simplifying the above expression we get,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{5}{{2420}}$
On solving we get,
${R_{req}} = 484\Omega $
As we know, the current drawn from electrical supply is given as,
$I = \dfrac{V}{{{R_{req}}}}$
Putting the values we have,
$I = \dfrac{{220}}{{484}}$
On solving we get,
$I = \dfrac{5}{{11}}A$
(B) Energy consumed by the two lamps in one hour is equal to energy consumed by ${1^{st}}$ lamp in one hour + energy consumed by ${2^{nd}}$ lamp in one hour
The equation would be represented as,
$E = {P_1} \times 1 + {P_2} \times 1$
This can also be written as,
$E = ({P_1} + {P_2}) \times 1$
Putting the values of ${P_1}$ and ${P_2}$ we have,
$E = (60W + 40W) \times 1hour$
On solving we have,
$E = 100Wh$
As, energy is expressed in $KWh$ and $1KWh = {10^2}Wh$
We have,
$E = 0.1KWh$
Note: The required resistance in series connection is calculated by simply adding the values of all resistance the given resistors in the series combination while in parallel connection as given in the question the reciprocal of the required resistance is equal to the sum of reciprocals of the resistances.
Complete step by step answer:
It is given in question that,
Power of ${1^{st}}$ lamp, ${P_1} = 40W$ and voltage of ${1^{st}}$ lamp, ${V_1} = 220V$
Power of ${2^{nd}}$ lamp, ${P_2} = 60W$ , voltage of ${2^{nd}}$ lamp , ${V_2} = 220V$
As we know that,
$P = \dfrac{{{V^2}}}{R}$
Where $P$ is the power, $V$ is the potential difference and $R$ is the resistance.
In terms of resistance we have,
$R = \dfrac{{{V^2}}}{P}$
So, the resistance of ${1^{st}}$ lamp, would be given as,
${R_1} = \dfrac{{V_1^2}}{{{P_1}}}$
Putting the values of the respective quantities in the above equation we have,
${R_1} = \dfrac{{{{(220)}^2}}}{{60}}$
On Solving we have,
${R_1} = \dfrac{{2420}}{3}\Omega $
Now the resistance of the second lamp would be calculated the same way and would be given as,
${R_2} = \dfrac{{V_2^2}}{{{P_2}}}$
Putting the values of the respective quantities in the above equation we have,
${R_2} = \dfrac{{{{(220)}^2}}}{{40}}$
On Solving we have,
${R_1} = 1210\Omega $
(A) In the a part of the question both the lamps are in parallel connection,
So, the required resistance would be given by,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}}$
Putting the respective values we have,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{3}{{2420}} + \dfrac{1}{{1210}}$
On simplifying the above expression we get,
$\dfrac{1}{{\operatorname{Re} q}} = \dfrac{5}{{2420}}$
On solving we get,
${R_{req}} = 484\Omega $
As we know, the current drawn from electrical supply is given as,
$I = \dfrac{V}{{{R_{req}}}}$
Putting the values we have,
$I = \dfrac{{220}}{{484}}$
On solving we get,
$I = \dfrac{5}{{11}}A$
(B) Energy consumed by the two lamps in one hour is equal to energy consumed by ${1^{st}}$ lamp in one hour + energy consumed by ${2^{nd}}$ lamp in one hour
The equation would be represented as,
$E = {P_1} \times 1 + {P_2} \times 1$
This can also be written as,
$E = ({P_1} + {P_2}) \times 1$
Putting the values of ${P_1}$ and ${P_2}$ we have,
$E = (60W + 40W) \times 1hour$
On solving we have,
$E = 100Wh$
As, energy is expressed in $KWh$ and $1KWh = {10^2}Wh$
We have,
$E = 0.1KWh$
Note: The required resistance in series connection is calculated by simply adding the values of all resistance the given resistors in the series combination while in parallel connection as given in the question the reciprocal of the required resistance is equal to the sum of reciprocals of the resistances.
Recently Updated Pages
JEE Main 2025-26 Experimental Skills Mock Test – Free Practice

JEE Main 2025-26: Magnetic Effects of Current & Magnetism Mock Test

JEE Main 2025-26 Atoms and Nuclei Mock Test – Free Practice Online

JEE Main Mock Test 2025-26: Optics Chapter Practice Online

The work done in slowly moving an electron of charge class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

