
Two identical uniform discs of mass m and radius r are arranged as shown in the figure. If \[\alpha \] is the angular acceleration of the lower disc and is the acceleration of the center of mass of the lower disc, then find the relation among \[{a_{cm}}\], \[\alpha \] and r.

A. \[{a_{cm}} = \dfrac{\alpha }{r}\]
B. \[{a_{cm}} = 2\alpha r\]
C. \[{a_{cm}} = \alpha r\]
D. None of these
Answer
219.3k+ views
Hint:Before we start addressing the problem, we need to know about what data has been provided and what we need to solve. Here they have given the mass of two identical discs as m and r , the angular acceleration of the lower disc is \[\alpha \] and the acceleration of the center of mass of the lower disc is \[{a_{cm}}\], then we need to find the relation among \[{a_{cm}}\], \[\alpha \] and r.
Complete step by step solution:

Image: Two identical uniform discs.
As shown in figure the tension T is acting on the discs having radius r
If we apply torque for the above disc at the centre then,
\[\tau = I \times \alpha \]
\[T \times r = \dfrac{{m{r^2}}}{2} \times {\alpha _1}\]
\[{\alpha _1} = \dfrac{{2T}}{{mr}}\]…… (1)
Now, if we apply the torque to the lower disc we get,
\[T \times r = \dfrac{{m{r^2}}}{2} \times \alpha \]
\[\alpha = \dfrac{{2T}}{{mr}}\]……….. (2)
From equation (1) and (2) we will have,
\[{\alpha _1} = \alpha \]….. (1)
Since the centre of mass of the lower disc passes through its centre then the centre of mass will become zero. Then, the acceleration of the above disc = Acceleration of the below disc
\[r{\alpha _1} = {a_{cm}} - r\alpha \]
Substitute the value \[{\alpha _1} = \alpha \] in above equation we get,
\[{a_{cm}} = 2r\alpha \]
Therefore, then the relation among \[{a_{cm}}\], \[\alpha \] and r is \[{a_{cm}} = 2r\alpha \].
Hence, option B is the correct answer.
Note: Here, in this problem it is important to remember that, the definition of angular acceleration, and also when the two identical uniform discs of mass m and radius r are connected through a string as shown we need to identify in which direction the torque will be acting.
Complete step by step solution:

Image: Two identical uniform discs.
As shown in figure the tension T is acting on the discs having radius r
If we apply torque for the above disc at the centre then,
\[\tau = I \times \alpha \]
\[T \times r = \dfrac{{m{r^2}}}{2} \times {\alpha _1}\]
\[{\alpha _1} = \dfrac{{2T}}{{mr}}\]…… (1)
Now, if we apply the torque to the lower disc we get,
\[T \times r = \dfrac{{m{r^2}}}{2} \times \alpha \]
\[\alpha = \dfrac{{2T}}{{mr}}\]……….. (2)
From equation (1) and (2) we will have,
\[{\alpha _1} = \alpha \]….. (1)
Since the centre of mass of the lower disc passes through its centre then the centre of mass will become zero. Then, the acceleration of the above disc = Acceleration of the below disc
\[r{\alpha _1} = {a_{cm}} - r\alpha \]
Substitute the value \[{\alpha _1} = \alpha \] in above equation we get,
\[{a_{cm}} = 2r\alpha \]
Therefore, then the relation among \[{a_{cm}}\], \[\alpha \] and r is \[{a_{cm}} = 2r\alpha \].
Hence, option B is the correct answer.
Note: Here, in this problem it is important to remember that, the definition of angular acceleration, and also when the two identical uniform discs of mass m and radius r are connected through a string as shown we need to identify in which direction the torque will be acting.
Recently Updated Pages
JEE Main 2026 Marking Scheme- Marks Distribution, Negative and Total Marks

Displacement and Velocity Time Graphs Explained

Clemmensen and Wolff Kishner Reductions: Mechanisms & Differences

Free Radical Substitution Mechanism: Steps & Examples for JEE/NEET

Average and RMS Value Explained: Formulas & Examples

JEE Main Candidate Login 2026 and Registration Portal | Form Access

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

