
Two identical sounds \[{S_1}\] and ${S_2}$ reach at a point P in phase. The resultant loudness at point P is $n\,dB$ higher than the loudness of ${S_1}$ . The value of $n$ is
A. 2
B. 4
C. 5
D. 6
Answer
162.9k+ views
Hint: Start with finding the relation between loudness of two sound waves and the resultant loudness of the two sound waves that are reaching at a point P in phase then equate it with the information provided in the question about the resultant loudness. Use the logarithmic formula of resultant loudness and the intensity of the sound waves.
Formula used:
The intensity of sound is,
$I \propto {a^2}$
Where, $I$ is the intensity of the sound wave and $a$ is the amplitude.
Logarithmic formula of resultant loudness is,
$\Delta L = 10{\log _{10}}\left( {\dfrac{{{I_2}}}{{{I_1}}}} \right)$
Where, $I_1$ and $I_2$ is the intensity of sound.
Complete step by step solution:
Let $a$ be the amplitude sound ${S_1}$ and ${S_2}$. Now we know that;
Intensity of the sound is directly proportional to amplitude,
$I \propto {a^2}$
Hence the loudness of the two sound waves will be:
Loudness due to first sound,
${S_1} = {I_1} = K{a^2}$
Loudness due to second sound,
${S_2} = {I_2} = K(2{a^2}) = 4K{a^2} = 4{I_1}$
Resultant loudness will be
$\Delta L = 10{\log _{10}}\left( {\dfrac{{{I_2}}}{{{I_1}}}} \right) \\
\Rightarrow \Delta L= 10{\log _{10}}\left( {\dfrac{{4{I_1}}}{{{I_1}}}} \right)$........(by putting values from above two equation)
By solving, we get;
$\Delta L = 10{\log _{10}}(4) = 10 \times 0.6 = 6$
Here $\Delta L = n$ that is resultant loudness.
Hence the correct answer is option D.
Note: Here all the values of the intensity of the sound waves are in variables if the numerical values provided in the question put the same in the respective equations. Also note that the sound waves reaching at point P here is in phase if it is not then the answer will be different according to the phase.
Formula used:
The intensity of sound is,
$I \propto {a^2}$
Where, $I$ is the intensity of the sound wave and $a$ is the amplitude.
Logarithmic formula of resultant loudness is,
$\Delta L = 10{\log _{10}}\left( {\dfrac{{{I_2}}}{{{I_1}}}} \right)$
Where, $I_1$ and $I_2$ is the intensity of sound.
Complete step by step solution:
Let $a$ be the amplitude sound ${S_1}$ and ${S_2}$. Now we know that;
Intensity of the sound is directly proportional to amplitude,
$I \propto {a^2}$
Hence the loudness of the two sound waves will be:
Loudness due to first sound,
${S_1} = {I_1} = K{a^2}$
Loudness due to second sound,
${S_2} = {I_2} = K(2{a^2}) = 4K{a^2} = 4{I_1}$
Resultant loudness will be
$\Delta L = 10{\log _{10}}\left( {\dfrac{{{I_2}}}{{{I_1}}}} \right) \\
\Rightarrow \Delta L= 10{\log _{10}}\left( {\dfrac{{4{I_1}}}{{{I_1}}}} \right)$........(by putting values from above two equation)
By solving, we get;
$\Delta L = 10{\log _{10}}(4) = 10 \times 0.6 = 6$
Here $\Delta L = n$ that is resultant loudness.
Hence the correct answer is option D.
Note: Here all the values of the intensity of the sound waves are in variables if the numerical values provided in the question put the same in the respective equations. Also note that the sound waves reaching at point P here is in phase if it is not then the answer will be different according to the phase.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
