
Two charges $q$ and \[ - 4q\] are held at a separation $r$ on a frictionless surface. Another charge is kept in such a way that they do not move if released. The value of the third charge and its position from \[ - 4q\] is:

A) \[ - 2q,2r\]
B) \[ - 4q,2r\]
C) \[q,r\]
D) $4q,2r$
Answer
162.6k+ views
Hint: Now, from the above problem, we know that two charges are placed at a distance $r$ from each other and it is also given that a third charge is also placed in such a way that the other two charges do not move if they are released. Now, we know that opposite charges attract each other. So, this third charge will be placed at a distance $x$ from the second charge. Now, by adding the force exerted by the third charge to first and second and equating it to zero, we will get our answer.
Formula used:
Force between the two charges placed at distance $d$ is \[F = \dfrac{{K \cdot {q_1} \cdot {q_2}}}{{{d^2}}}\] . Where, \[K\] is proportionality constant known as the Coulomb's law constant and ${q_1},{q_2}$ are the two charges.
Complete step by step solution:

Now, the third charge is $q'$and it is placed at a distance $x$ from the charge \[ - 4q\] .
Now, using the formula for force between the charge $q$ and $q'$ ,
We get,
\[F = \dfrac{{K \cdot q \cdot q'}}{{{{\left( {r + x} \right)}^2}}}\] ,
Now, using the same formula for force between the charge \[ - 4q\] and $q'$ ,
We get,
\[F = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( x \right)}^2}}}\]
Now, equating the adding the above two equations and equating them to 0 because we know that the system is in equilibrium.
We get,
\[\dfrac{{K \cdot q \cdot q'}}{{{{\left( {r + x} \right)}^2}}} + \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( x \right)}^2}}} = 0...........\left( 1 \right)\]
Now, simplifying the equation, we get,
\[
\dfrac{1}{{{{\left( {r + x} \right)}^2}}} + \dfrac{{ - 4}}{{{{\left( x \right)}^2}}} = 0 \\
{x^2} - 4{\left( {r + x} \right)^2} = 0 \\
{x^2} = 4{\left( {r + x} \right)^2} \\
\]
Now, taking square root on both sides, we get,
$
x = 2r + 2x \\
x = - 2r \\
$
Which means that the third charge is placed at a distance $2r$ from the charge \[ - 4q\] .
Now, taking the forces exerted on the second charge by first and third charge.
${F_{23}} = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( { - 2r} \right)}^2}}}$
${F_{13}} = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q}}{{{{\left( r \right)}^2}}}$
Now, subtracting the above equations and evaluating them to 0.
$\dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( { - 2r} \right)}^2}}} - \dfrac{{K \cdot \left( { - 4q} \right) \cdot q}}{{{{\left( r \right)}^2}}} = 0$
Now, simplifying the above equation,
$
\dfrac{{q'}}{{4{r^2}}} - \dfrac{q}{{{r^2}}} = 0 \\
q' = 4q \\
$
Now, the value of the third charge is $4q$ .
Hence, the correct option is D.
Note: In the given problem the system of the three charges are in equilibrium. So, the resultant force exerted on the one charge by the other two is equal to zero. So, we have calculated the force on the second charge by the other two charges to calculate the value of the third charge.
Formula used:
Force between the two charges placed at distance $d$ is \[F = \dfrac{{K \cdot {q_1} \cdot {q_2}}}{{{d^2}}}\] . Where, \[K\] is proportionality constant known as the Coulomb's law constant and ${q_1},{q_2}$ are the two charges.
Complete step by step solution:

Now, the third charge is $q'$and it is placed at a distance $x$ from the charge \[ - 4q\] .
Now, using the formula for force between the charge $q$ and $q'$ ,
We get,
\[F = \dfrac{{K \cdot q \cdot q'}}{{{{\left( {r + x} \right)}^2}}}\] ,
Now, using the same formula for force between the charge \[ - 4q\] and $q'$ ,
We get,
\[F = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( x \right)}^2}}}\]
Now, equating the adding the above two equations and equating them to 0 because we know that the system is in equilibrium.
We get,
\[\dfrac{{K \cdot q \cdot q'}}{{{{\left( {r + x} \right)}^2}}} + \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( x \right)}^2}}} = 0...........\left( 1 \right)\]
Now, simplifying the equation, we get,
\[
\dfrac{1}{{{{\left( {r + x} \right)}^2}}} + \dfrac{{ - 4}}{{{{\left( x \right)}^2}}} = 0 \\
{x^2} - 4{\left( {r + x} \right)^2} = 0 \\
{x^2} = 4{\left( {r + x} \right)^2} \\
\]
Now, taking square root on both sides, we get,
$
x = 2r + 2x \\
x = - 2r \\
$
Which means that the third charge is placed at a distance $2r$ from the charge \[ - 4q\] .
Now, taking the forces exerted on the second charge by first and third charge.
${F_{23}} = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( { - 2r} \right)}^2}}}$
${F_{13}} = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q}}{{{{\left( r \right)}^2}}}$
Now, subtracting the above equations and evaluating them to 0.
$\dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( { - 2r} \right)}^2}}} - \dfrac{{K \cdot \left( { - 4q} \right) \cdot q}}{{{{\left( r \right)}^2}}} = 0$
Now, simplifying the above equation,
$
\dfrac{{q'}}{{4{r^2}}} - \dfrac{q}{{{r^2}}} = 0 \\
q' = 4q \\
$
Now, the value of the third charge is $4q$ .
Hence, the correct option is D.
Note: In the given problem the system of the three charges are in equilibrium. So, the resultant force exerted on the one charge by the other two is equal to zero. So, we have calculated the force on the second charge by the other two charges to calculate the value of the third charge.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
