
Two charges $q$ and \[ - 4q\] are held at a separation $r$ on a frictionless surface. Another charge is kept in such a way that they do not move if released. The value of the third charge and its position from \[ - 4q\] is:

A) \[ - 2q,2r\]
B) \[ - 4q,2r\]
C) \[q,r\]
D) $4q,2r$
Answer
218.7k+ views
Hint: Now, from the above problem, we know that two charges are placed at a distance $r$ from each other and it is also given that a third charge is also placed in such a way that the other two charges do not move if they are released. Now, we know that opposite charges attract each other. So, this third charge will be placed at a distance $x$ from the second charge. Now, by adding the force exerted by the third charge to first and second and equating it to zero, we will get our answer.
Formula used:
Force between the two charges placed at distance $d$ is \[F = \dfrac{{K \cdot {q_1} \cdot {q_2}}}{{{d^2}}}\] . Where, \[K\] is proportionality constant known as the Coulomb's law constant and ${q_1},{q_2}$ are the two charges.
Complete step by step solution:

Now, the third charge is $q'$and it is placed at a distance $x$ from the charge \[ - 4q\] .
Now, using the formula for force between the charge $q$ and $q'$ ,
We get,
\[F = \dfrac{{K \cdot q \cdot q'}}{{{{\left( {r + x} \right)}^2}}}\] ,
Now, using the same formula for force between the charge \[ - 4q\] and $q'$ ,
We get,
\[F = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( x \right)}^2}}}\]
Now, equating the adding the above two equations and equating them to 0 because we know that the system is in equilibrium.
We get,
\[\dfrac{{K \cdot q \cdot q'}}{{{{\left( {r + x} \right)}^2}}} + \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( x \right)}^2}}} = 0...........\left( 1 \right)\]
Now, simplifying the equation, we get,
\[
\dfrac{1}{{{{\left( {r + x} \right)}^2}}} + \dfrac{{ - 4}}{{{{\left( x \right)}^2}}} = 0 \\
{x^2} - 4{\left( {r + x} \right)^2} = 0 \\
{x^2} = 4{\left( {r + x} \right)^2} \\
\]
Now, taking square root on both sides, we get,
$
x = 2r + 2x \\
x = - 2r \\
$
Which means that the third charge is placed at a distance $2r$ from the charge \[ - 4q\] .
Now, taking the forces exerted on the second charge by first and third charge.
${F_{23}} = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( { - 2r} \right)}^2}}}$
${F_{13}} = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q}}{{{{\left( r \right)}^2}}}$
Now, subtracting the above equations and evaluating them to 0.
$\dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( { - 2r} \right)}^2}}} - \dfrac{{K \cdot \left( { - 4q} \right) \cdot q}}{{{{\left( r \right)}^2}}} = 0$
Now, simplifying the above equation,
$
\dfrac{{q'}}{{4{r^2}}} - \dfrac{q}{{{r^2}}} = 0 \\
q' = 4q \\
$
Now, the value of the third charge is $4q$ .
Hence, the correct option is D.
Note: In the given problem the system of the three charges are in equilibrium. So, the resultant force exerted on the one charge by the other two is equal to zero. So, we have calculated the force on the second charge by the other two charges to calculate the value of the third charge.
Formula used:
Force between the two charges placed at distance $d$ is \[F = \dfrac{{K \cdot {q_1} \cdot {q_2}}}{{{d^2}}}\] . Where, \[K\] is proportionality constant known as the Coulomb's law constant and ${q_1},{q_2}$ are the two charges.
Complete step by step solution:

Now, the third charge is $q'$and it is placed at a distance $x$ from the charge \[ - 4q\] .
Now, using the formula for force between the charge $q$ and $q'$ ,
We get,
\[F = \dfrac{{K \cdot q \cdot q'}}{{{{\left( {r + x} \right)}^2}}}\] ,
Now, using the same formula for force between the charge \[ - 4q\] and $q'$ ,
We get,
\[F = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( x \right)}^2}}}\]
Now, equating the adding the above two equations and equating them to 0 because we know that the system is in equilibrium.
We get,
\[\dfrac{{K \cdot q \cdot q'}}{{{{\left( {r + x} \right)}^2}}} + \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( x \right)}^2}}} = 0...........\left( 1 \right)\]
Now, simplifying the equation, we get,
\[
\dfrac{1}{{{{\left( {r + x} \right)}^2}}} + \dfrac{{ - 4}}{{{{\left( x \right)}^2}}} = 0 \\
{x^2} - 4{\left( {r + x} \right)^2} = 0 \\
{x^2} = 4{\left( {r + x} \right)^2} \\
\]
Now, taking square root on both sides, we get,
$
x = 2r + 2x \\
x = - 2r \\
$
Which means that the third charge is placed at a distance $2r$ from the charge \[ - 4q\] .
Now, taking the forces exerted on the second charge by first and third charge.
${F_{23}} = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( { - 2r} \right)}^2}}}$
${F_{13}} = \dfrac{{K \cdot \left( { - 4q} \right) \cdot q}}{{{{\left( r \right)}^2}}}$
Now, subtracting the above equations and evaluating them to 0.
$\dfrac{{K \cdot \left( { - 4q} \right) \cdot q'}}{{{{\left( { - 2r} \right)}^2}}} - \dfrac{{K \cdot \left( { - 4q} \right) \cdot q}}{{{{\left( r \right)}^2}}} = 0$
Now, simplifying the above equation,
$
\dfrac{{q'}}{{4{r^2}}} - \dfrac{q}{{{r^2}}} = 0 \\
q' = 4q \\
$
Now, the value of the third charge is $4q$ .
Hence, the correct option is D.
Note: In the given problem the system of the three charges are in equilibrium. So, the resultant force exerted on the one charge by the other two is equal to zero. So, we have calculated the force on the second charge by the other two charges to calculate the value of the third charge.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

