
Two bodies A and B have thermal emissivities of 0.01 and 0.81, respectively. The outer surface areas of the two bodies are the same. The two bodies emit total radiant power of the same rate. Wavelength ${{\lambda }_{B}}$ corresponding to maximum spectral radiancy in the radiation from B shifted from the wavelength corresponding to maximum spectral radiancy in the radiation from A, by 1.00μm. If the temperature of A is 5802 K.
A. The temperature of B is 1934K
B. ${{\lambda }_{B}}=1.5\mu m$
C. The temperature of B is 11604K
D. The temperature of B is 2901K
Answer
233.1k+ views
Hint: It is given that surface area is the same for both the bodies. The two bodies emit the same power. We have to find the wavelength and corresponding temperature. We use the equation for power radiated by a body and Wien’s law to solve this problem.
Formula used:
We use equation for power radiated:
Power radiated, $P=\sigma eA{{T}^{4}}$
Where A is the surface area of the body, T is the temperature of the body, $e$ is the emissivity of the body and $\sigma $ is the Stefan-Boltzmann constant.
We also use Wien’s law,
${{\lambda }_{B}}=\dfrac{b}{{{T}_{B}}}$
Where b=0.3cm kelvin and ${{\lambda }_{B}}$ is the wavelength and T is the temperature.
Complete step by step solution:
There are two bodies A and B with the same surface area and power radiated by both the bodies is the same.
Emissivity of body A, ${{e}_{A}}=0.01$
Emissivity of body B, ${{e}_{B}}=0.81$
We have to find the wavelength and corresponding temperature of body B. Shift in the wavelength is 1.00 μm.
Temperature of body A, ${{T}_{A}}=5802\,K$
First, we consider the statement that power radiated and surface area of both the bodies is same. That is:
$\sigma {{e}_{A}}A{{T}_{A}}^{4}=\sigma {{e}_{B}}A{{T}_{B}}^{4}$
From which on further solving we get:
\[\dfrac{{{T}_{A}}}{{{T}_{B}}}={{\left( \dfrac{{{e}_{A}}}{{{e}_{B}}} \right)}^{\dfrac{1}{4}}} \\ \]
On equating values, we get temperature of second body as:
${{T}_{B}}=1934\,K$
Now applying Wien’s displacement law,
${{\lambda }_{B}}=\dfrac{b}{{{T}_{B}}}=\dfrac{0.3cmK}{1934K}=0.000155cm=1.5\,\mu m$
Therefore, the answer is options A and B.
Note: This question has two answers. If we consider b different for different bodies then we get another answer. This question can also be solved without taking b value but with the equation ${{\lambda }_{B}}{{T}_{B}}={{\lambda }_{A}}{{T}_{A}}$ which is another form of Wien’s law and shift in wavelength is given.
Formula used:
We use equation for power radiated:
Power radiated, $P=\sigma eA{{T}^{4}}$
Where A is the surface area of the body, T is the temperature of the body, $e$ is the emissivity of the body and $\sigma $ is the Stefan-Boltzmann constant.
We also use Wien’s law,
${{\lambda }_{B}}=\dfrac{b}{{{T}_{B}}}$
Where b=0.3cm kelvin and ${{\lambda }_{B}}$ is the wavelength and T is the temperature.
Complete step by step solution:
There are two bodies A and B with the same surface area and power radiated by both the bodies is the same.
Emissivity of body A, ${{e}_{A}}=0.01$
Emissivity of body B, ${{e}_{B}}=0.81$
We have to find the wavelength and corresponding temperature of body B. Shift in the wavelength is 1.00 μm.
Temperature of body A, ${{T}_{A}}=5802\,K$
First, we consider the statement that power radiated and surface area of both the bodies is same. That is:
$\sigma {{e}_{A}}A{{T}_{A}}^{4}=\sigma {{e}_{B}}A{{T}_{B}}^{4}$
From which on further solving we get:
\[\dfrac{{{T}_{A}}}{{{T}_{B}}}={{\left( \dfrac{{{e}_{A}}}{{{e}_{B}}} \right)}^{\dfrac{1}{4}}} \\ \]
On equating values, we get temperature of second body as:
${{T}_{B}}=1934\,K$
Now applying Wien’s displacement law,
${{\lambda }_{B}}=\dfrac{b}{{{T}_{B}}}=\dfrac{0.3cmK}{1934K}=0.000155cm=1.5\,\mu m$
Therefore, the answer is options A and B.
Note: This question has two answers. If we consider b different for different bodies then we get another answer. This question can also be solved without taking b value but with the equation ${{\lambda }_{B}}{{T}_{B}}={{\lambda }_{A}}{{T}_{A}}$ which is another form of Wien’s law and shift in wavelength is given.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

