
Two 5 molal solutions are prepared by dissolving a non-electrolyte non-volatile solute separately in the solvents X and Y. The molecular weight of the solvents are ${M}_{X}{M}_{Y}$ respectively where ${M}_{X} = \cfrac {3}{4} {M}_{Y}$. The relative lowering of the vapour pressure of the solution X is "m" times that of the solution in Y. Given that the number of moles of solute is very small in comparison to that of the solvent, the value of "m" is?
A. $\cfrac {3}{4}$
B. $\cfrac {1}{2}$
C. $\cfrac {1}{4}$
D. $\cfrac {4}{3}$
Answer
220.8k+ views
Hint: When a solute is added to the solvent the vapour pressure of the solvent decreases. This is known as the lowering of vapour pressure. The lowering of the vapour pressure depends upon the amount of non-volatile solute is added in the solution.
Complete step by step answer: It is given is the question that two solutions are prepared by dissolving a non-electrolyte non-volatile solute separately in the solvents X and Y.
It is also given that $ { M }_{ X } = \cfrac { 3 }{ 4 } { M }_{ Y }$ ------ (1)
We know that the relative lowering of the vapour pressure of two solutions is given as:
$ { (\cfrac { \Delta P }{ P } ) }_{ X } = m{ (\cfrac { \Delta P }{ P } ) }_{ Y }$
The above relation can be written because it is given that the relative lowering of the vapour pressure of the solution X in "m" times that of the solution in Y.
Now, we know that the relative lowering of the vapour pressure of a solution is directly proportional to the mole fraction of the solution. Thus, from the vapour pressure relation, we get
$ { M }_{ x } \times \cfrac { 5 }{ 1000 } = m \times { M }_{ Y } \times \cfrac { 5 }{ 1000 }$
Here, $\cfrac {5}{1000}$ gets cancelled from both the sides. And then substituting this equation in equation (1), we get
$ \cfrac { 3 }{ 4 } \times { M }_{ Y } = m \times { M }_{ Y }$
Here, ${M}_{Y}$ gets cancelled from both the sides.
$ m = \cfrac { 3 }{ 4 }$
Therefore, the value of m is $\cfrac {3}{4}$. Hence, the correct answer is option (A).
Note: 5 molal solutions of both X and Y are prepared. It means that 5 moles of the solute is dissolved in 1 kg (or 1000g) of the solvent.
Therefore, no. of moles of solvent becomes $\cfrac { 1000 }{ M }$
Thus, the mole fraction of the solvent becomes $\cfrac { 5 }{ \cfrac { 1000 }{ M } }$
Complete step by step answer: It is given is the question that two solutions are prepared by dissolving a non-electrolyte non-volatile solute separately in the solvents X and Y.
It is also given that $ { M }_{ X } = \cfrac { 3 }{ 4 } { M }_{ Y }$ ------ (1)
We know that the relative lowering of the vapour pressure of two solutions is given as:
$ { (\cfrac { \Delta P }{ P } ) }_{ X } = m{ (\cfrac { \Delta P }{ P } ) }_{ Y }$
The above relation can be written because it is given that the relative lowering of the vapour pressure of the solution X in "m" times that of the solution in Y.
Now, we know that the relative lowering of the vapour pressure of a solution is directly proportional to the mole fraction of the solution. Thus, from the vapour pressure relation, we get
$ { M }_{ x } \times \cfrac { 5 }{ 1000 } = m \times { M }_{ Y } \times \cfrac { 5 }{ 1000 }$
Here, $\cfrac {5}{1000}$ gets cancelled from both the sides. And then substituting this equation in equation (1), we get
$ \cfrac { 3 }{ 4 } \times { M }_{ Y } = m \times { M }_{ Y }$
Here, ${M}_{Y}$ gets cancelled from both the sides.
$ m = \cfrac { 3 }{ 4 }$
Therefore, the value of m is $\cfrac {3}{4}$. Hence, the correct answer is option (A).
Note: 5 molal solutions of both X and Y are prepared. It means that 5 moles of the solute is dissolved in 1 kg (or 1000g) of the solvent.
Therefore, no. of moles of solvent becomes $\cfrac { 1000 }{ M }$
Thus, the mole fraction of the solvent becomes $\cfrac { 5 }{ \cfrac { 1000 }{ M } }$
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main

What is the pH of 001 M solution of HCl a 1 b 10 c class 11 chemistry JEE_Main

Aromatization of nhexane gives A Benzene B Toluene class 11 chemistry JEE_Main

Show how you will synthesise i 1Phenylethanol from class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

Which of the following Compounds does not exhibit tautomerism class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

