
There is a hole in the bottom of the tank having water. If total pressure at bottom is 3 atm \[\left( {1atm = {{10}^5}\dfrac{N}{{{m^2}}}} \right)\] then the velocity of water flowing from hole is:
A. \[\sqrt {400} \dfrac{m}{s}\]
B. \[\sqrt {600} \dfrac{m}{s}\]
C. \[\sqrt {60} \dfrac{m}{s}\]
D.None of these
Answer
145.2k+ views
Hint First, we will find the height of the liquid column using the difference of pressure at the bottom of the tank and at the top. After that we will use this height in Bernoulli's equation to find the velocity/efflux of the water.
Complete step-by-step solution
Total pressure at the bottom of the tank = 3 atm
\[{P_1} + \rho gh = {P_2}\] , where \[{P_1}\] = pressure at the top of the tank (1 atm)
\[\rho \] = density of water
h= height of the liquid column
\[{P_2}\] = pressure at the bottom of the tank (3 atm)
\[\rho gh = 3 - 1 = 2atm\]
Bernoulli’s theorem-
\[{P_1} + \rho g{h_1} + \dfrac{1}{2}\rho v_1^2 = {P_2} + \rho g{h_2} + \dfrac{1}{2}\rho v_2^2\]
To find the velocity of water flowing out of the tank use
\[\rho gh = \dfrac{1}{2}\rho {v^2}\]
\[v = \sqrt {2gh} \]
\[\rho \] of water= \[{10^3}\dfrac{{kg}}{L}\]
\[v = \sqrt {\dfrac{4}{{{{10}^3}}}} \dfrac{m}{s}\]
So, \[v = \sqrt {400} \dfrac{m}{s}\]
Option(A) \[\sqrt {400} \dfrac{m}{s}\]
Note You have to keep in mind that the value of the pressure of the tank at the top is not equal to zero, it’s equal to atmospheric pressure i.s. 1atm.
Height of the water column is found by the difference of both the pressure, not alone by pressure of the bottom of the tank, otherwise you will get the solution wrong.
Complete step-by-step solution
Total pressure at the bottom of the tank = 3 atm
\[{P_1} + \rho gh = {P_2}\] , where \[{P_1}\] = pressure at the top of the tank (1 atm)
\[\rho \] = density of water
h= height of the liquid column
\[{P_2}\] = pressure at the bottom of the tank (3 atm)
\[\rho gh = 3 - 1 = 2atm\]
Bernoulli’s theorem-
\[{P_1} + \rho g{h_1} + \dfrac{1}{2}\rho v_1^2 = {P_2} + \rho g{h_2} + \dfrac{1}{2}\rho v_2^2\]
To find the velocity of water flowing out of the tank use
\[\rho gh = \dfrac{1}{2}\rho {v^2}\]
\[v = \sqrt {2gh} \]
\[\rho \] of water= \[{10^3}\dfrac{{kg}}{L}\]
\[v = \sqrt {\dfrac{4}{{{{10}^3}}}} \dfrac{m}{s}\]
So, \[v = \sqrt {400} \dfrac{m}{s}\]
Option(A) \[\sqrt {400} \dfrac{m}{s}\]
Note You have to keep in mind that the value of the pressure of the tank at the top is not equal to zero, it’s equal to atmospheric pressure i.s. 1atm.
Height of the water column is found by the difference of both the pressure, not alone by pressure of the bottom of the tank, otherwise you will get the solution wrong.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
