
There is a hole in area A at the bottom of the cylindrical vessel. Water is filled up to height h and water flows out in t second. If water is filled to a height of 4h, find the time at which the water will flow out.
A. t
B. 4t
C. 2t
D. \[\dfrac{t}{4}\]
Answer
164.7k+ views
Hint:Before going to solve this question let us discuss what data they have given. They have considered a cylindrical vessel where the water is filled to a height h and a hole is made at the bottom and water flows out in t seconds. Suppose if the water is filled to a height of 4h, we need to find how much time it takes to flow.
Formula Used:
To find the time required to empty the tank, the formula is,
\[t = \dfrac{A}{{{A_0}}}\dfrac{{\sqrt {2H} }}{g}\]
Where,
A is area of the hole in a cylindrical vessel
\[{{\rm{A}}_{\rm{0}}}\]is area of a cylindrical vessel
H is height of a cylindrical vessel
g is acceleration due to gravity
Complete step by step solution:
Consider a cylindrical vessel of the area \[{{\rm{A}}_{\rm{0}}}\]and there is a hole at the bottom of the cylindrical vessel of area A. the water is filled up to height h and water flows out in the second t. suppose if water is filled to a height of 4h, then we need to find the time at which the water will flow out.
The time required to empty the tank can be written as,
\[t = \dfrac{A}{{{A_0}}}\dfrac{{\sqrt {2H} }}{g}\]
Here,
\[{t_1} = \dfrac{A}{{{A_0}}}\dfrac{{\sqrt {2{H_1}} }}{g}\]and
\[\Rightarrow {t_2} = \dfrac{A}{{{A_0}}}\dfrac{{\sqrt {2{H_2}} }}{g}\]
Taking the ratios of time, we obtain
\[\dfrac{{{t_2}}}{{{t_1}}} = \dfrac{{\sqrt {{H_2}} }}{{\sqrt {{H_1}} }}\]
Here, \[{H_1} = h\] and \[{H_1} = 4h\]
Substitute the value in above equation we get,
\[\dfrac{{{t_2}}}{{{t_1}}} = \sqrt {\dfrac{{4h}}{h}} \]
\[\Rightarrow \dfrac{{{t_2}}}{{{t_1}}} = 2\]
\[\Rightarrow {t_2} = 2{t_1}\]
\[\therefore {t_2} = 2t\]
Therefore, the time at which the water will flow out is 2t.
Hence, option C is the correct answer.
Note:Here, it is important to remember Bernoulli's principle. It states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. This principle relates the pressure of a fluid to its elevation and its speed. This equation is used to approximate these parameters in water, air, or any fluid that has a very low viscosity.
Formula Used:
To find the time required to empty the tank, the formula is,
\[t = \dfrac{A}{{{A_0}}}\dfrac{{\sqrt {2H} }}{g}\]
Where,
A is area of the hole in a cylindrical vessel
\[{{\rm{A}}_{\rm{0}}}\]is area of a cylindrical vessel
H is height of a cylindrical vessel
g is acceleration due to gravity
Complete step by step solution:
Consider a cylindrical vessel of the area \[{{\rm{A}}_{\rm{0}}}\]and there is a hole at the bottom of the cylindrical vessel of area A. the water is filled up to height h and water flows out in the second t. suppose if water is filled to a height of 4h, then we need to find the time at which the water will flow out.
The time required to empty the tank can be written as,
\[t = \dfrac{A}{{{A_0}}}\dfrac{{\sqrt {2H} }}{g}\]
Here,
\[{t_1} = \dfrac{A}{{{A_0}}}\dfrac{{\sqrt {2{H_1}} }}{g}\]and
\[\Rightarrow {t_2} = \dfrac{A}{{{A_0}}}\dfrac{{\sqrt {2{H_2}} }}{g}\]
Taking the ratios of time, we obtain
\[\dfrac{{{t_2}}}{{{t_1}}} = \dfrac{{\sqrt {{H_2}} }}{{\sqrt {{H_1}} }}\]
Here, \[{H_1} = h\] and \[{H_1} = 4h\]
Substitute the value in above equation we get,
\[\dfrac{{{t_2}}}{{{t_1}}} = \sqrt {\dfrac{{4h}}{h}} \]
\[\Rightarrow \dfrac{{{t_2}}}{{{t_1}}} = 2\]
\[\Rightarrow {t_2} = 2{t_1}\]
\[\therefore {t_2} = 2t\]
Therefore, the time at which the water will flow out is 2t.
Hence, option C is the correct answer.
Note:Here, it is important to remember Bernoulli's principle. It states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. This principle relates the pressure of a fluid to its elevation and its speed. This equation is used to approximate these parameters in water, air, or any fluid that has a very low viscosity.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
