
The variation in potential energy of a harmonic oscillator is as shown in the figure. The spring constant is

A. \[1 \times {10^2}N{m^{ - 1}}\]
B. \[1.5 \times {10^2}N{m^{ - 1}}\]
C. \[0.0667 \times {10^2}N{m^{ - 1}}\]
D. \[3 \times {10^2}N{m^{ - 1}}\]
Answer
162.9k+ views
Hint: The term potential energy refers to the energy that has been stored or the energy that has been caused by its location. The potential energy of an object changes mostly when the object is lower or higher than its original position.
Formula Used:
\[PE = {V_0} + \dfrac{1}{2}k{x^2}\]
where PE is the potential energy, \[{V_0}\] is the initial energy, k is the spring constant and x is the displacement travelled by the string.
Complete step by step solution:
We have been given that the initial energy of the harmonic oscillator is 0.01 J and its final potential energy is 0.04 J. The spring of the harmonic oscillator has travelled 20 mm or 0.02 m. We have to find the spring constant of the oscillator. Let \[{V_0}\] be the initial potential energy, PE be the final potential energy, x be the distance travelled by the string, and k be the spring constant.
By using the formula of the potential energy of the harmonic oscillator, we get,
\[PE = {V_0} + \dfrac{1}{2}k{x^2} \\
\Rightarrow 0.04 = 0.01 + \dfrac{1}{2}k{\left( {0.02} \right)^2} \\
\Rightarrow 0.03 = 0.0002k \\
\Rightarrow k = 150N{m^{ - 1}} \]
Writing the result in the scientific notation we get,
\[k = 150N{m^{ - 1}} \\
\Rightarrow k = 1.5 \times 100N{m^{ - 1}} \\
\therefore k = 1.5 \times {10^2}N{m^{ - 1}} \]
So, option B, \[1.5 \times {10^2}N{m^{ - 1}}\] is the required solution.
Note: As the harmonic oscillator initially had some potential energy and after applying the spring its potential energy gets increased so to calculate the spring constant we only need the energy generated by the spring. So, for the energy generated only by spring, we subtract the initial potential energy from the final potential energy.
Formula Used:
\[PE = {V_0} + \dfrac{1}{2}k{x^2}\]
where PE is the potential energy, \[{V_0}\] is the initial energy, k is the spring constant and x is the displacement travelled by the string.
Complete step by step solution:
We have been given that the initial energy of the harmonic oscillator is 0.01 J and its final potential energy is 0.04 J. The spring of the harmonic oscillator has travelled 20 mm or 0.02 m. We have to find the spring constant of the oscillator. Let \[{V_0}\] be the initial potential energy, PE be the final potential energy, x be the distance travelled by the string, and k be the spring constant.
By using the formula of the potential energy of the harmonic oscillator, we get,
\[PE = {V_0} + \dfrac{1}{2}k{x^2} \\
\Rightarrow 0.04 = 0.01 + \dfrac{1}{2}k{\left( {0.02} \right)^2} \\
\Rightarrow 0.03 = 0.0002k \\
\Rightarrow k = 150N{m^{ - 1}} \]
Writing the result in the scientific notation we get,
\[k = 150N{m^{ - 1}} \\
\Rightarrow k = 1.5 \times 100N{m^{ - 1}} \\
\therefore k = 1.5 \times {10^2}N{m^{ - 1}} \]
So, option B, \[1.5 \times {10^2}N{m^{ - 1}}\] is the required solution.
Note: As the harmonic oscillator initially had some potential energy and after applying the spring its potential energy gets increased so to calculate the spring constant we only need the energy generated by the spring. So, for the energy generated only by spring, we subtract the initial potential energy from the final potential energy.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Charging and Discharging of Capacitor

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
