
The variation in potential energy of a harmonic oscillator is as shown in the figure. The spring constant is

A. \[1 \times {10^2}N{m^{ - 1}}\]
B. \[1.5 \times {10^2}N{m^{ - 1}}\]
C. \[0.0667 \times {10^2}N{m^{ - 1}}\]
D. \[3 \times {10^2}N{m^{ - 1}}\]
Answer
232.8k+ views
Hint: The term potential energy refers to the energy that has been stored or the energy that has been caused by its location. The potential energy of an object changes mostly when the object is lower or higher than its original position.
Formula Used:
\[PE = {V_0} + \dfrac{1}{2}k{x^2}\]
where PE is the potential energy, \[{V_0}\] is the initial energy, k is the spring constant and x is the displacement travelled by the string.
Complete step by step solution:
We have been given that the initial energy of the harmonic oscillator is 0.01 J and its final potential energy is 0.04 J. The spring of the harmonic oscillator has travelled 20 mm or 0.02 m. We have to find the spring constant of the oscillator. Let \[{V_0}\] be the initial potential energy, PE be the final potential energy, x be the distance travelled by the string, and k be the spring constant.
By using the formula of the potential energy of the harmonic oscillator, we get,
\[PE = {V_0} + \dfrac{1}{2}k{x^2} \\
\Rightarrow 0.04 = 0.01 + \dfrac{1}{2}k{\left( {0.02} \right)^2} \\
\Rightarrow 0.03 = 0.0002k \\
\Rightarrow k = 150N{m^{ - 1}} \]
Writing the result in the scientific notation we get,
\[k = 150N{m^{ - 1}} \\
\Rightarrow k = 1.5 \times 100N{m^{ - 1}} \\
\therefore k = 1.5 \times {10^2}N{m^{ - 1}} \]
So, option B, \[1.5 \times {10^2}N{m^{ - 1}}\] is the required solution.
Note: As the harmonic oscillator initially had some potential energy and after applying the spring its potential energy gets increased so to calculate the spring constant we only need the energy generated by the spring. So, for the energy generated only by spring, we subtract the initial potential energy from the final potential energy.
Formula Used:
\[PE = {V_0} + \dfrac{1}{2}k{x^2}\]
where PE is the potential energy, \[{V_0}\] is the initial energy, k is the spring constant and x is the displacement travelled by the string.
Complete step by step solution:
We have been given that the initial energy of the harmonic oscillator is 0.01 J and its final potential energy is 0.04 J. The spring of the harmonic oscillator has travelled 20 mm or 0.02 m. We have to find the spring constant of the oscillator. Let \[{V_0}\] be the initial potential energy, PE be the final potential energy, x be the distance travelled by the string, and k be the spring constant.
By using the formula of the potential energy of the harmonic oscillator, we get,
\[PE = {V_0} + \dfrac{1}{2}k{x^2} \\
\Rightarrow 0.04 = 0.01 + \dfrac{1}{2}k{\left( {0.02} \right)^2} \\
\Rightarrow 0.03 = 0.0002k \\
\Rightarrow k = 150N{m^{ - 1}} \]
Writing the result in the scientific notation we get,
\[k = 150N{m^{ - 1}} \\
\Rightarrow k = 1.5 \times 100N{m^{ - 1}} \\
\therefore k = 1.5 \times {10^2}N{m^{ - 1}} \]
So, option B, \[1.5 \times {10^2}N{m^{ - 1}}\] is the required solution.
Note: As the harmonic oscillator initially had some potential energy and after applying the spring its potential energy gets increased so to calculate the spring constant we only need the energy generated by the spring. So, for the energy generated only by spring, we subtract the initial potential energy from the final potential energy.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

