
The values of ${X_L}$, ${X_C}$ and $R$ in an AC circuit are $8\,\Omega $, $6\,\Omega $ and $10\,\Omega $ respectively. The total impedance of the circuit:
(A) $10.2\,\Omega $
(B) $12.2\,\Omega $
(C) $10\,\Omega $
(D) $24.4\,\Omega $
Answer
217.2k+ views
Hint: The impedance of the circuit is determined by using the impedance of the circuit formula, by using this formula and also by using the values of the inductive reactance, capacitive reactance and the resistance values, then the impedance in the circuit can be determined.
Formula used:
The impedance of the circuit is given by,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
Where, $Z$ is the impedance of the circuit, ${X_L}$ is the inductive reactance of the circuit, ${X_C}$ is the capacitive reactance of the circuit and $R$ is the resistance of the circuit.
Complete step by step solution:
Given that,
The inductive reactance of the circuit is, ${X_L} = 8\,\Omega $
The capacitive reactance of the circuit is, ${X_C} = 6\,\Omega $
The resistance of the circuit is, $R = 10\,\Omega $
Now,
The impedance of the circuit is given by,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} \,................\left( 1 \right)$
By substituting the inductive reactance of the circuit, the capacitive reactance of the circuit and the resistance of the circuit in the above equation (1), then the above equation (1) is written as,
$Z = \sqrt {{{10}^2} + {{\left( {8 - 6} \right)}^2}} $
By subtracting the terms in the above equation, then the above equation is written as,
$Z = \sqrt {{{10}^2} + {2^2}} $
By squaring the terms inside the square root in the above equation, then the above equation is written as,
$Z = \sqrt {100 + 4} $
By adding the terms inside the square root in the above equation, then the above equation is written as,
$Z = \sqrt {104} $
By taking the square root in the above equation, then the above equation is written as,
$Z = 10.19\,\Omega $
Then the above equation is approximately written as,
$Z \simeq 10.2\,\Omega $
Hence, the option (A) is the correct answer.
Note: The impedance of the circuit is dependent only on the resistance of the circuit, the inductive reactance of the circuit, the capacitive reactance of the circuit. The impedance is also the form of the resistance and it is the measure of the overall opposition of the current in the circuit.
Formula used:
The impedance of the circuit is given by,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} $
Where, $Z$ is the impedance of the circuit, ${X_L}$ is the inductive reactance of the circuit, ${X_C}$ is the capacitive reactance of the circuit and $R$ is the resistance of the circuit.
Complete step by step solution:
Given that,
The inductive reactance of the circuit is, ${X_L} = 8\,\Omega $
The capacitive reactance of the circuit is, ${X_C} = 6\,\Omega $
The resistance of the circuit is, $R = 10\,\Omega $
Now,
The impedance of the circuit is given by,
$Z = \sqrt {{R^2} + {{\left( {{X_L} - {X_C}} \right)}^2}} \,................\left( 1 \right)$
By substituting the inductive reactance of the circuit, the capacitive reactance of the circuit and the resistance of the circuit in the above equation (1), then the above equation (1) is written as,
$Z = \sqrt {{{10}^2} + {{\left( {8 - 6} \right)}^2}} $
By subtracting the terms in the above equation, then the above equation is written as,
$Z = \sqrt {{{10}^2} + {2^2}} $
By squaring the terms inside the square root in the above equation, then the above equation is written as,
$Z = \sqrt {100 + 4} $
By adding the terms inside the square root in the above equation, then the above equation is written as,
$Z = \sqrt {104} $
By taking the square root in the above equation, then the above equation is written as,
$Z = 10.19\,\Omega $
Then the above equation is approximately written as,
$Z \simeq 10.2\,\Omega $
Hence, the option (A) is the correct answer.
Note: The impedance of the circuit is dependent only on the resistance of the circuit, the inductive reactance of the circuit, the capacitive reactance of the circuit. The impedance is also the form of the resistance and it is the measure of the overall opposition of the current in the circuit.
Recently Updated Pages
Introduction to Dimensions: Understanding the Basics

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

