
The value of p for which both the roots of the equation $4{x^2} - 20px + (25{p^2} + 15p - 66) = 0$ are less than 2, lies in
A. $\left( {\dfrac{4}{5},2} \right)$
B. $\left( {2,\infty } \right)$
C. $\left( { - 1,\dfrac{4}{5}} \right)$
D. $\left( { - \infty , - 1} \right)$
Answer
161.7k+ views
Hint: Check the concavity of the given polynomial and form an inequality. Use the fact that the sum of roots is less than 4. Also use the fact that the determinant must be greater than or equal to 0. Solve the three inequalities to get the final answer.
Formula used: Given a quadratic polynomial \[a{x^2} + bx + c\], the sum of roots of the polynomial is $ - \dfrac{b}{a}$ and the discriminant is ${b^2} - 4ac$
Complete step-by-step solution:
The coefficient of ${x^2}$ in the given equation is 4 which is greater than 0. Therefore, the graph of the polynomial $4{x^2} - 20px + (25{p^2} + 15 - 66)$ is concave upwards. Since both the roots are less than 2, $f(2) > 0$. Let the roots be $m,n$.

(Self-made diagram)
Since $f(2) > 0$
$4{(2)^2} - 20p(2) + (25{p^2} + 15p - 66) > 0$
$16 - 40p + 25{p^2} + 15p - 66 > 0$
$25{p^2} - 25p - 50 > 0$
Simplifying further, we get
${p^2} - p - 2 > 0$
${p^2} - 2p + p - 2 > 0$
$(p + 1)(p - 2) > 0$
$p \in ( - \infty , - 1) \cup (2,\infty )$
Since the roots of $4{x^2} - 20px + (25{p^2} + 15p - 66) = 0$ are real, the discriminant must be greater than or equal to 0.
${( - 20p)^2} - 4(4)(25{p^2} + 15p - 66) \geqslant 0$
$400{p^2} - 400{p^2} - 240p + 1056 \geqslant 0$
$240p \leqslant 1056$
Simplifying further, we get
$p \leqslant \dfrac{{22}}{5}$
\[p \in ( - \infty ,4.4]\]
Since both the roots are less than, the sum of roots must be lesser than 4.
$ - \dfrac{{ - 20p}}{4} < 4$
$5p < 4$
Simplifying further, we get
$p < \dfrac{4}{5}$
$p \in \left( { - \infty ,\dfrac{4}{5}} \right)$
Taking the intersection of $( - \infty , - 1) \cup (2,\infty )$, \[( - \infty ,4.4]\] and $\left( { - \infty ,\dfrac{4}{5}} \right)$, we get $p \in ( - \infty , - 1)$
Therefore, the correct answer is option D. $( - \infty , - 1)$
Note: Given a quadratic polynomial \[a{x^2} + bx + c\], the concavity of the graph of the polynomial depends on the sign of $a$; If $a > 0$, the graph will be concave upwards; If $a < 0$ the graph will be concave downwards.
Formula used: Given a quadratic polynomial \[a{x^2} + bx + c\], the sum of roots of the polynomial is $ - \dfrac{b}{a}$ and the discriminant is ${b^2} - 4ac$
Complete step-by-step solution:
The coefficient of ${x^2}$ in the given equation is 4 which is greater than 0. Therefore, the graph of the polynomial $4{x^2} - 20px + (25{p^2} + 15 - 66)$ is concave upwards. Since both the roots are less than 2, $f(2) > 0$. Let the roots be $m,n$.

(Self-made diagram)
Since $f(2) > 0$
$4{(2)^2} - 20p(2) + (25{p^2} + 15p - 66) > 0$
$16 - 40p + 25{p^2} + 15p - 66 > 0$
$25{p^2} - 25p - 50 > 0$
Simplifying further, we get
${p^2} - p - 2 > 0$
${p^2} - 2p + p - 2 > 0$
$(p + 1)(p - 2) > 0$
$p \in ( - \infty , - 1) \cup (2,\infty )$
Since the roots of $4{x^2} - 20px + (25{p^2} + 15p - 66) = 0$ are real, the discriminant must be greater than or equal to 0.
${( - 20p)^2} - 4(4)(25{p^2} + 15p - 66) \geqslant 0$
$400{p^2} - 400{p^2} - 240p + 1056 \geqslant 0$
$240p \leqslant 1056$
Simplifying further, we get
$p \leqslant \dfrac{{22}}{5}$
\[p \in ( - \infty ,4.4]\]
Since both the roots are less than, the sum of roots must be lesser than 4.
$ - \dfrac{{ - 20p}}{4} < 4$
$5p < 4$
Simplifying further, we get
$p < \dfrac{4}{5}$
$p \in \left( { - \infty ,\dfrac{4}{5}} \right)$
Taking the intersection of $( - \infty , - 1) \cup (2,\infty )$, \[( - \infty ,4.4]\] and $\left( { - \infty ,\dfrac{4}{5}} \right)$, we get $p \in ( - \infty , - 1)$
Therefore, the correct answer is option D. $( - \infty , - 1)$
Note: Given a quadratic polynomial \[a{x^2} + bx + c\], the concavity of the graph of the polynomial depends on the sign of $a$; If $a > 0$, the graph will be concave upwards; If $a < 0$ the graph will be concave downwards.
Recently Updated Pages
How To Find Mean Deviation For Ungrouped Data

Difference Between Molecule and Compound: JEE Main 2024

Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses

Difference Between Area and Surface Area: JEE Main 2024

Difference Between Work and Power: JEE Main 2024

Difference Between Acetic Acid and Glacial Acetic Acid: JEE Main 2024

Trending doubts
JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

JEE Main B.Arch Cut Off Percentile 2025

JoSAA Counselling 2025: Registration Dates OUT, Eligibility Criteria, Cutoffs

NIT Cutoff Percentile for 2025

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

List of Fastest Century in IPL History

NEET 2025 – Every New Update You Need to Know
