
The Value of $\mathop {\lim }\limits_{x \to \infty } {\left[ {\dfrac{{\left( {{x^2} - 2x + 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}}} \right]^x}$ is
1. ${e^2}$
2. ${e^{ - 2}}$
3. ${e^6}$
4. None of these
Answer
232.8k+ views
Hint: In this question, check the given function is in which form by putting the value of $x$ (as in limit) then solve the indeterminate form using the relevant formula. Here the function is in $\mathop {\lim }\limits_{x \to \infty } f{\left( x \right)^{g\left( x \right)}}$ form (indeterminate form ${\infty ^\infty }$). To solve, use $\mathop {\lim }\limits_{x \to \infty } {e^{g\left( x \right)\left[ {f\left( x \right) - 1} \right]}}$ this formula and solve.
Formula Used:
Indeterminate form (${\infty ^\infty }$) formula –
$\mathop {\lim }\limits_{x \to \infty } {e^{g\left( x \right)\left[ {f\left( x \right) - 1} \right]}}$
Complete step by step Solution:
Given that,
$\mathop {\lim }\limits_{x \to \infty } {\left[ {\dfrac{{\left( {{x^2} - 2x + 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}}} \right]^x}$
This function is in the form of $\mathop {\lim }\limits_{x \to \infty } f{\left( x \right)^{g\left( x \right)}}$( ${\infty ^\infty }$ form).
Where $f\left( x \right) = \dfrac{{\left( {{x^2} - 2x + 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}},g\left( x \right) = x$
To solve the indeterminate form use $\mathop {\lim }\limits_{x \to \infty } {e^{g\left( x \right)\left[ {f\left( x \right) - 1} \right]}}$,
$ = \mathop {\lim }\limits_{x \to \infty } {e^{g\left( x \right)\left[ {f\left( x \right) - 1} \right]}}$
$ = \mathop {\lim }\limits_{x \to \infty } {e^{x\left[ {\dfrac{{\left( {{x^2} - 2x + 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}} - 1} \right]}}$
$ = \mathop {\lim }\limits_{x \to \infty } {e^{x\left[ {\dfrac{{\left( {{x^2} - 2x + 2x - 2x + 1 + 1 - 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}} - 1} \right]}}$
$ = \mathop {\lim }\limits_{x \to \infty } {e^{x\left[ {1 + \dfrac{{\left( {2x - 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}} - 1} \right]}}$
$ = \mathop {\lim }\limits_{x \to \infty } {e^{\left[ {\dfrac{{\left( {2{x^2} - x} \right)}}{{\left( {{x^2} - 4x + 2} \right)}}} \right]}}$
$ = \mathop {\lim }\limits_{x \to \infty } {e^{\left[ {\dfrac{{{x^2}\left( {2 - \dfrac{1}{x}} \right)}}{{{x^2}\left( {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} \right)}}} \right]}}$
$ = {e^2}$
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is a good knowledge of forms of limits. Students must remember that some limits are referred to as indeterminate if the limiting behavior of specific portions of a given statement cannot predict the overall limit. When the limits for the given function are applied, it becomes $\dfrac{0}{0}$, which is known as indeterminate forms.
Formula Used:
Indeterminate form (${\infty ^\infty }$) formula –
$\mathop {\lim }\limits_{x \to \infty } {e^{g\left( x \right)\left[ {f\left( x \right) - 1} \right]}}$
Complete step by step Solution:
Given that,
$\mathop {\lim }\limits_{x \to \infty } {\left[ {\dfrac{{\left( {{x^2} - 2x + 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}}} \right]^x}$
This function is in the form of $\mathop {\lim }\limits_{x \to \infty } f{\left( x \right)^{g\left( x \right)}}$( ${\infty ^\infty }$ form).
Where $f\left( x \right) = \dfrac{{\left( {{x^2} - 2x + 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}},g\left( x \right) = x$
To solve the indeterminate form use $\mathop {\lim }\limits_{x \to \infty } {e^{g\left( x \right)\left[ {f\left( x \right) - 1} \right]}}$,
$ = \mathop {\lim }\limits_{x \to \infty } {e^{g\left( x \right)\left[ {f\left( x \right) - 1} \right]}}$
$ = \mathop {\lim }\limits_{x \to \infty } {e^{x\left[ {\dfrac{{\left( {{x^2} - 2x + 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}} - 1} \right]}}$
$ = \mathop {\lim }\limits_{x \to \infty } {e^{x\left[ {\dfrac{{\left( {{x^2} - 2x + 2x - 2x + 1 + 1 - 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}} - 1} \right]}}$
$ = \mathop {\lim }\limits_{x \to \infty } {e^{x\left[ {1 + \dfrac{{\left( {2x - 1} \right)}}{{\left( {{x^2} - 4x + 2} \right)}} - 1} \right]}}$
$ = \mathop {\lim }\limits_{x \to \infty } {e^{\left[ {\dfrac{{\left( {2{x^2} - x} \right)}}{{\left( {{x^2} - 4x + 2} \right)}}} \right]}}$
$ = \mathop {\lim }\limits_{x \to \infty } {e^{\left[ {\dfrac{{{x^2}\left( {2 - \dfrac{1}{x}} \right)}}{{{x^2}\left( {1 - \dfrac{4}{x} + \dfrac{2}{{{x^2}}}} \right)}}} \right]}}$
$ = {e^2}$
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is a good knowledge of forms of limits. Students must remember that some limits are referred to as indeterminate if the limiting behavior of specific portions of a given statement cannot predict the overall limit. When the limits for the given function are applied, it becomes $\dfrac{0}{0}$, which is known as indeterminate forms.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

