
The value of $\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$ is
$
{\text{a}}{\text{. n}} \\
{\text{b}}{\text{. }}\dfrac{{n + 1}}{2} \\
{\text{c}}{\text{. }}\dfrac{{n\left( {n + 1} \right)}}{2} \\
{\text{d}}{\text{. }}\dfrac{{n\left( {n - 1} \right)}}{2} \\
$
Answer
232.8k+ views
Hint: - Apply L’ Hospital’s Rule.
Given limit is
$\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$
Put$\left( {x = 1} \right)$, in this limit
$ \Rightarrow \dfrac{{1 + 1 + 1 + .................. + 1 - n}}{{1 - 1}}$
As we know sum of 1 up to n terms is equal to n.
$ \Rightarrow \dfrac{{n - n}}{{1 - 1}} = \dfrac{0}{0}$
So, at\[x = 1\], the limit is in form of \[\dfrac{0}{0}\]
So, apply L’ Hospital’s rule
So, differentiate numerator and denominator separately w.r.t.$x$
As we know differentiation of\[{{\text{x}}^n} = n{x^{n - 1}}\], and differentiation of constant term is zero.
\[ \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{d}{{dx}}\left( {x + {x^2} + ...... + {x^n} - n} \right)}}{{\dfrac{d}{{dx}}\left( {x - 1} \right)}} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{1 + 2x + 3{x^2} + ........ + n{x^{n - 1}} - 0}}{{1 - 0}}\]
Now, put\[x = 1\],\[ \Rightarrow \dfrac{{1 + 2 + 3 + ...................... + n}}{1}\]
\[ \Rightarrow 1 + 2 + 3 + ...................... + n = \sum\limits_{r = 1}^n r \]
Now as we know sum of first natural numbers is \[\left( {{\text{i}}{\text{.e}}{\text{.}}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}} \right)\]
\[\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}} = \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Hence option (c) is the correct answer .
Note: - In such types of questions the key concept we have to remember is that, whenever the limit comes in the form of \[\dfrac{0}{0}\] always apply L’ hospital’s rule, (i.e. differentiate numerator and denominator separately), and always remember the sum of first natural numbers then we will get the required answer.
Given limit is
$\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$
Put$\left( {x = 1} \right)$, in this limit
$ \Rightarrow \dfrac{{1 + 1 + 1 + .................. + 1 - n}}{{1 - 1}}$
As we know sum of 1 up to n terms is equal to n.
$ \Rightarrow \dfrac{{n - n}}{{1 - 1}} = \dfrac{0}{0}$
So, at\[x = 1\], the limit is in form of \[\dfrac{0}{0}\]
So, apply L’ Hospital’s rule
So, differentiate numerator and denominator separately w.r.t.$x$
As we know differentiation of\[{{\text{x}}^n} = n{x^{n - 1}}\], and differentiation of constant term is zero.
\[ \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{d}{{dx}}\left( {x + {x^2} + ...... + {x^n} - n} \right)}}{{\dfrac{d}{{dx}}\left( {x - 1} \right)}} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{1 + 2x + 3{x^2} + ........ + n{x^{n - 1}} - 0}}{{1 - 0}}\]
Now, put\[x = 1\],\[ \Rightarrow \dfrac{{1 + 2 + 3 + ...................... + n}}{1}\]
\[ \Rightarrow 1 + 2 + 3 + ...................... + n = \sum\limits_{r = 1}^n r \]
Now as we know sum of first natural numbers is \[\left( {{\text{i}}{\text{.e}}{\text{.}}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}} \right)\]
\[\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}} = \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Hence option (c) is the correct answer .
Note: - In such types of questions the key concept we have to remember is that, whenever the limit comes in the form of \[\dfrac{0}{0}\] always apply L’ hospital’s rule, (i.e. differentiate numerator and denominator separately), and always remember the sum of first natural numbers then we will get the required answer.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

