Answer
Verified
88.8k+ views
Hint: - Apply L’ Hospital’s Rule.
Given limit is
$\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$
Put$\left( {x = 1} \right)$, in this limit
$ \Rightarrow \dfrac{{1 + 1 + 1 + .................. + 1 - n}}{{1 - 1}}$
As we know sum of 1 up to n terms is equal to n.
$ \Rightarrow \dfrac{{n - n}}{{1 - 1}} = \dfrac{0}{0}$
So, at\[x = 1\], the limit is in form of \[\dfrac{0}{0}\]
So, apply L’ Hospital’s rule
So, differentiate numerator and denominator separately w.r.t.$x$
As we know differentiation of\[{{\text{x}}^n} = n{x^{n - 1}}\], and differentiation of constant term is zero.
\[ \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{d}{{dx}}\left( {x + {x^2} + ...... + {x^n} - n} \right)}}{{\dfrac{d}{{dx}}\left( {x - 1} \right)}} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{1 + 2x + 3{x^2} + ........ + n{x^{n - 1}} - 0}}{{1 - 0}}\]
Now, put\[x = 1\],\[ \Rightarrow \dfrac{{1 + 2 + 3 + ...................... + n}}{1}\]
\[ \Rightarrow 1 + 2 + 3 + ...................... + n = \sum\limits_{r = 1}^n r \]
Now as we know sum of first natural numbers is \[\left( {{\text{i}}{\text{.e}}{\text{.}}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}} \right)\]
\[\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}} = \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Hence option (c) is the correct answer .
Note: - In such types of questions the key concept we have to remember is that, whenever the limit comes in the form of \[\dfrac{0}{0}\] always apply L’ hospital’s rule, (i.e. differentiate numerator and denominator separately), and always remember the sum of first natural numbers then we will get the required answer.
Given limit is
$\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$
Put$\left( {x = 1} \right)$, in this limit
$ \Rightarrow \dfrac{{1 + 1 + 1 + .................. + 1 - n}}{{1 - 1}}$
As we know sum of 1 up to n terms is equal to n.
$ \Rightarrow \dfrac{{n - n}}{{1 - 1}} = \dfrac{0}{0}$
So, at\[x = 1\], the limit is in form of \[\dfrac{0}{0}\]
So, apply L’ Hospital’s rule
So, differentiate numerator and denominator separately w.r.t.$x$
As we know differentiation of\[{{\text{x}}^n} = n{x^{n - 1}}\], and differentiation of constant term is zero.
\[ \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{d}{{dx}}\left( {x + {x^2} + ...... + {x^n} - n} \right)}}{{\dfrac{d}{{dx}}\left( {x - 1} \right)}} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{1 + 2x + 3{x^2} + ........ + n{x^{n - 1}} - 0}}{{1 - 0}}\]
Now, put\[x = 1\],\[ \Rightarrow \dfrac{{1 + 2 + 3 + ...................... + n}}{1}\]
\[ \Rightarrow 1 + 2 + 3 + ...................... + n = \sum\limits_{r = 1}^n r \]
Now as we know sum of first natural numbers is \[\left( {{\text{i}}{\text{.e}}{\text{.}}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}} \right)\]
\[\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}} = \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Hence option (c) is the correct answer .
Note: - In such types of questions the key concept we have to remember is that, whenever the limit comes in the form of \[\dfrac{0}{0}\] always apply L’ hospital’s rule, (i.e. differentiate numerator and denominator separately), and always remember the sum of first natural numbers then we will get the required answer.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
Velocity of car at t 0 is u moves with a constant acceleration class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Formula for number of images formed by two plane mirrors class 12 physics JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A passenger in an aeroplane shall A Never see a rainbow class 12 physics JEE_Main