
The value of \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\] is
1. \[\dfrac{{ - 1}}{2}\left( {1 - i\sqrt 3 } \right)\]
2. \[\dfrac{1}{2}\left( {1 - i\sqrt 3 } \right)\]
3. \[\dfrac{{ - 1}}{2}\left( {\sqrt 3 - i} \right)\]
4. \[\dfrac{1}{2}\left( {\sqrt 3 - i} \right)\]
Answer
232.8k+ views
Hint:
In this question, we have to find the value of the given function \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]. We solve this using the trigonometric functions and trigonometric identities. Method and convert \[\sin \] function into \[\cos \] function Here, we will use the De Moivre’s theorem to solve this question
Formula used:
The basic trigonometric formulas are given as
1. \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
2. \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
3. \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
4. \[\sin 2\theta = 2\sin \theta \cos \theta \]
5. \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\]
6. \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Complete step-by-step solution:
The given function is \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\].
Let us assume \[I = {\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]
Firstly, we will apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \] and
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] in the given function, we get
\[I = {\left( {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) + i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) - i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}} \right)^3}\]
Now, we will simplify the sine and cosine function in the above expression, we get
\[I = {\left( {\dfrac{{1 + \cos \dfrac{{5\pi }}{{18}} + i\sin \dfrac{{5\pi }}{{18}}}}{{1 + \cos \dfrac{{5\pi }}{{18}} - i\sin \dfrac{{5\pi }}{{18}}}}} \right)^3}\]
Further, we use the trigonometry identities \[\cos 2\theta = 2{\cos ^2}\theta - 1\] and expressed \[1 + \cos \theta \] as \[2{\cos ^2}\dfrac{\theta }{2}\] and also use \[\sin 2\theta = 2\sin \theta \cos \theta \] and expressed as \[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} + 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} - 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will taken out \[2\cos \dfrac{{5\pi }}{{36}}\] as common from both numerator and denominator and cancel out, we get
\[\begin{array}{l}I = {\left( {\dfrac{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}}{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}} \right)}}} \right)^3}\\I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\end{array}\]
Now, we will multiply and divide both numerator and denominator by \[\cos \dfrac{\theta }{2} + i\sin \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}} \times \dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Further, we will use the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\], we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} - {i^2}{{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will use the formula \[{i^2} = - 1\]in the above expression, we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} + {{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
As we know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], we get
\[I = {\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)^6}\]
Now, we will apply the demoivre’s theorem \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\], we get
\[\begin{array}{l}I = \cos 6 \times \dfrac{{5\pi }}{{36}} + i\sin 6 \times \dfrac{{5\pi }}{{36}}\\I = \cos \dfrac{{5\pi }}{6} + i\sin \dfrac{{5\pi }}{6}\end{array}\]
Further, we will write \[\dfrac{{5\pi }}{6} = \dfrac{\pi }{2} + \dfrac{\pi }{3}\] to simplify the above equation, we get
\[I = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) + i\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right)\]
Furthermore, we will apply the formula \[\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta \] and
\[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \], we get
\[I = - \sin \dfrac{\pi }{3} + i\cos \dfrac{\pi }{3}\]
As we know that \[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\] and
\[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\], we get
\[I = - \dfrac{1}{2}\left( {\sqrt 3 - i} \right)\]
Hence, the option (3) is correct
Note
In these types of questions, we should remember the formulas of trigonometry formulas and their value and their conversion also. We can also solve this question using exponential form that is \[{e^{i\theta }} = \cos \theta + i\sin \theta \]
In this question, we have to find the value of the given function \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]. We solve this using the trigonometric functions and trigonometric identities. Method and convert \[\sin \] function into \[\cos \] function Here, we will use the De Moivre’s theorem to solve this question
Formula used:
The basic trigonometric formulas are given as
1. \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
2. \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
3. \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
4. \[\sin 2\theta = 2\sin \theta \cos \theta \]
5. \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\]
6. \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Complete step-by-step solution:
The given function is \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\].
Let us assume \[I = {\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]
Firstly, we will apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \] and
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] in the given function, we get
\[I = {\left( {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) + i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) - i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}} \right)^3}\]
Now, we will simplify the sine and cosine function in the above expression, we get
\[I = {\left( {\dfrac{{1 + \cos \dfrac{{5\pi }}{{18}} + i\sin \dfrac{{5\pi }}{{18}}}}{{1 + \cos \dfrac{{5\pi }}{{18}} - i\sin \dfrac{{5\pi }}{{18}}}}} \right)^3}\]
Further, we use the trigonometry identities \[\cos 2\theta = 2{\cos ^2}\theta - 1\] and expressed \[1 + \cos \theta \] as \[2{\cos ^2}\dfrac{\theta }{2}\] and also use \[\sin 2\theta = 2\sin \theta \cos \theta \] and expressed as \[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} + 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} - 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will taken out \[2\cos \dfrac{{5\pi }}{{36}}\] as common from both numerator and denominator and cancel out, we get
\[\begin{array}{l}I = {\left( {\dfrac{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}}{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}} \right)}}} \right)^3}\\I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\end{array}\]
Now, we will multiply and divide both numerator and denominator by \[\cos \dfrac{\theta }{2} + i\sin \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}} \times \dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Further, we will use the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\], we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} - {i^2}{{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will use the formula \[{i^2} = - 1\]in the above expression, we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} + {{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
As we know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], we get
\[I = {\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)^6}\]
Now, we will apply the demoivre’s theorem \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\], we get
\[\begin{array}{l}I = \cos 6 \times \dfrac{{5\pi }}{{36}} + i\sin 6 \times \dfrac{{5\pi }}{{36}}\\I = \cos \dfrac{{5\pi }}{6} + i\sin \dfrac{{5\pi }}{6}\end{array}\]
Further, we will write \[\dfrac{{5\pi }}{6} = \dfrac{\pi }{2} + \dfrac{\pi }{3}\] to simplify the above equation, we get
\[I = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) + i\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right)\]
Furthermore, we will apply the formula \[\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta \] and
\[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \], we get
\[I = - \sin \dfrac{\pi }{3} + i\cos \dfrac{\pi }{3}\]
As we know that \[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\] and
\[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\], we get
\[I = - \dfrac{1}{2}\left( {\sqrt 3 - i} \right)\]
Hence, the option (3) is correct
Note
In these types of questions, we should remember the formulas of trigonometry formulas and their value and their conversion also. We can also solve this question using exponential form that is \[{e^{i\theta }} = \cos \theta + i\sin \theta \]
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

