
The value of \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\] is
1. \[\dfrac{{ - 1}}{2}\left( {1 - i\sqrt 3 } \right)\]
2. \[\dfrac{1}{2}\left( {1 - i\sqrt 3 } \right)\]
3. \[\dfrac{{ - 1}}{2}\left( {\sqrt 3 - i} \right)\]
4. \[\dfrac{1}{2}\left( {\sqrt 3 - i} \right)\]
Answer
217.8k+ views
Hint:
In this question, we have to find the value of the given function \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]. We solve this using the trigonometric functions and trigonometric identities. Method and convert \[\sin \] function into \[\cos \] function Here, we will use the De Moivre’s theorem to solve this question
Formula used:
The basic trigonometric formulas are given as
1. \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
2. \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
3. \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
4. \[\sin 2\theta = 2\sin \theta \cos \theta \]
5. \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\]
6. \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Complete step-by-step solution:
The given function is \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\].
Let us assume \[I = {\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]
Firstly, we will apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \] and
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] in the given function, we get
\[I = {\left( {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) + i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) - i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}} \right)^3}\]
Now, we will simplify the sine and cosine function in the above expression, we get
\[I = {\left( {\dfrac{{1 + \cos \dfrac{{5\pi }}{{18}} + i\sin \dfrac{{5\pi }}{{18}}}}{{1 + \cos \dfrac{{5\pi }}{{18}} - i\sin \dfrac{{5\pi }}{{18}}}}} \right)^3}\]
Further, we use the trigonometry identities \[\cos 2\theta = 2{\cos ^2}\theta - 1\] and expressed \[1 + \cos \theta \] as \[2{\cos ^2}\dfrac{\theta }{2}\] and also use \[\sin 2\theta = 2\sin \theta \cos \theta \] and expressed as \[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} + 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} - 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will taken out \[2\cos \dfrac{{5\pi }}{{36}}\] as common from both numerator and denominator and cancel out, we get
\[\begin{array}{l}I = {\left( {\dfrac{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}}{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}} \right)}}} \right)^3}\\I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\end{array}\]
Now, we will multiply and divide both numerator and denominator by \[\cos \dfrac{\theta }{2} + i\sin \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}} \times \dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Further, we will use the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\], we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} - {i^2}{{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will use the formula \[{i^2} = - 1\]in the above expression, we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} + {{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
As we know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], we get
\[I = {\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)^6}\]
Now, we will apply the demoivre’s theorem \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\], we get
\[\begin{array}{l}I = \cos 6 \times \dfrac{{5\pi }}{{36}} + i\sin 6 \times \dfrac{{5\pi }}{{36}}\\I = \cos \dfrac{{5\pi }}{6} + i\sin \dfrac{{5\pi }}{6}\end{array}\]
Further, we will write \[\dfrac{{5\pi }}{6} = \dfrac{\pi }{2} + \dfrac{\pi }{3}\] to simplify the above equation, we get
\[I = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) + i\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right)\]
Furthermore, we will apply the formula \[\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta \] and
\[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \], we get
\[I = - \sin \dfrac{\pi }{3} + i\cos \dfrac{\pi }{3}\]
As we know that \[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\] and
\[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\], we get
\[I = - \dfrac{1}{2}\left( {\sqrt 3 - i} \right)\]
Hence, the option (3) is correct
Note
In these types of questions, we should remember the formulas of trigonometry formulas and their value and their conversion also. We can also solve this question using exponential form that is \[{e^{i\theta }} = \cos \theta + i\sin \theta \]
In this question, we have to find the value of the given function \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]. We solve this using the trigonometric functions and trigonometric identities. Method and convert \[\sin \] function into \[\cos \] function Here, we will use the De Moivre’s theorem to solve this question
Formula used:
The basic trigonometric formulas are given as
1. \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
2. \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
3. \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
4. \[\sin 2\theta = 2\sin \theta \cos \theta \]
5. \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\]
6. \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Complete step-by-step solution:
The given function is \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\].
Let us assume \[I = {\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]
Firstly, we will apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \] and
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] in the given function, we get
\[I = {\left( {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) + i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) - i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}} \right)^3}\]
Now, we will simplify the sine and cosine function in the above expression, we get
\[I = {\left( {\dfrac{{1 + \cos \dfrac{{5\pi }}{{18}} + i\sin \dfrac{{5\pi }}{{18}}}}{{1 + \cos \dfrac{{5\pi }}{{18}} - i\sin \dfrac{{5\pi }}{{18}}}}} \right)^3}\]
Further, we use the trigonometry identities \[\cos 2\theta = 2{\cos ^2}\theta - 1\] and expressed \[1 + \cos \theta \] as \[2{\cos ^2}\dfrac{\theta }{2}\] and also use \[\sin 2\theta = 2\sin \theta \cos \theta \] and expressed as \[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} + 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} - 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will taken out \[2\cos \dfrac{{5\pi }}{{36}}\] as common from both numerator and denominator and cancel out, we get
\[\begin{array}{l}I = {\left( {\dfrac{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}}{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}} \right)}}} \right)^3}\\I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\end{array}\]
Now, we will multiply and divide both numerator and denominator by \[\cos \dfrac{\theta }{2} + i\sin \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}} \times \dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Further, we will use the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\], we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} - {i^2}{{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will use the formula \[{i^2} = - 1\]in the above expression, we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} + {{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
As we know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], we get
\[I = {\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)^6}\]
Now, we will apply the demoivre’s theorem \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\], we get
\[\begin{array}{l}I = \cos 6 \times \dfrac{{5\pi }}{{36}} + i\sin 6 \times \dfrac{{5\pi }}{{36}}\\I = \cos \dfrac{{5\pi }}{6} + i\sin \dfrac{{5\pi }}{6}\end{array}\]
Further, we will write \[\dfrac{{5\pi }}{6} = \dfrac{\pi }{2} + \dfrac{\pi }{3}\] to simplify the above equation, we get
\[I = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) + i\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right)\]
Furthermore, we will apply the formula \[\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta \] and
\[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \], we get
\[I = - \sin \dfrac{\pi }{3} + i\cos \dfrac{\pi }{3}\]
As we know that \[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\] and
\[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\], we get
\[I = - \dfrac{1}{2}\left( {\sqrt 3 - i} \right)\]
Hence, the option (3) is correct
Note
In these types of questions, we should remember the formulas of trigonometry formulas and their value and their conversion also. We can also solve this question using exponential form that is \[{e^{i\theta }} = \cos \theta + i\sin \theta \]
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

