
The value of \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\] is
1. \[\dfrac{{ - 1}}{2}\left( {1 - i\sqrt 3 } \right)\]
2. \[\dfrac{1}{2}\left( {1 - i\sqrt 3 } \right)\]
3. \[\dfrac{{ - 1}}{2}\left( {\sqrt 3 - i} \right)\]
4. \[\dfrac{1}{2}\left( {\sqrt 3 - i} \right)\]
Answer
162k+ views
Hint:
In this question, we have to find the value of the given function \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]. We solve this using the trigonometric functions and trigonometric identities. Method and convert \[\sin \] function into \[\cos \] function Here, we will use the De Moivre’s theorem to solve this question
Formula used:
The basic trigonometric formulas are given as
1. \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
2. \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
3. \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
4. \[\sin 2\theta = 2\sin \theta \cos \theta \]
5. \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\]
6. \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Complete step-by-step solution:
The given function is \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\].
Let us assume \[I = {\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]
Firstly, we will apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \] and
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] in the given function, we get
\[I = {\left( {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) + i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) - i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}} \right)^3}\]
Now, we will simplify the sine and cosine function in the above expression, we get
\[I = {\left( {\dfrac{{1 + \cos \dfrac{{5\pi }}{{18}} + i\sin \dfrac{{5\pi }}{{18}}}}{{1 + \cos \dfrac{{5\pi }}{{18}} - i\sin \dfrac{{5\pi }}{{18}}}}} \right)^3}\]
Further, we use the trigonometry identities \[\cos 2\theta = 2{\cos ^2}\theta - 1\] and expressed \[1 + \cos \theta \] as \[2{\cos ^2}\dfrac{\theta }{2}\] and also use \[\sin 2\theta = 2\sin \theta \cos \theta \] and expressed as \[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} + 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} - 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will taken out \[2\cos \dfrac{{5\pi }}{{36}}\] as common from both numerator and denominator and cancel out, we get
\[\begin{array}{l}I = {\left( {\dfrac{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}}{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}} \right)}}} \right)^3}\\I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\end{array}\]
Now, we will multiply and divide both numerator and denominator by \[\cos \dfrac{\theta }{2} + i\sin \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}} \times \dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Further, we will use the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\], we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} - {i^2}{{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will use the formula \[{i^2} = - 1\]in the above expression, we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} + {{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
As we know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], we get
\[I = {\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)^6}\]
Now, we will apply the demoivre’s theorem \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\], we get
\[\begin{array}{l}I = \cos 6 \times \dfrac{{5\pi }}{{36}} + i\sin 6 \times \dfrac{{5\pi }}{{36}}\\I = \cos \dfrac{{5\pi }}{6} + i\sin \dfrac{{5\pi }}{6}\end{array}\]
Further, we will write \[\dfrac{{5\pi }}{6} = \dfrac{\pi }{2} + \dfrac{\pi }{3}\] to simplify the above equation, we get
\[I = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) + i\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right)\]
Furthermore, we will apply the formula \[\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta \] and
\[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \], we get
\[I = - \sin \dfrac{\pi }{3} + i\cos \dfrac{\pi }{3}\]
As we know that \[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\] and
\[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\], we get
\[I = - \dfrac{1}{2}\left( {\sqrt 3 - i} \right)\]
Hence, the option (3) is correct
Note
In these types of questions, we should remember the formulas of trigonometry formulas and their value and their conversion also. We can also solve this question using exponential form that is \[{e^{i\theta }} = \cos \theta + i\sin \theta \]
In this question, we have to find the value of the given function \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]. We solve this using the trigonometric functions and trigonometric identities. Method and convert \[\sin \] function into \[\cos \] function Here, we will use the De Moivre’s theorem to solve this question
Formula used:
The basic trigonometric formulas are given as
1. \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \]
2. \[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \]
3. \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
4. \[\sin 2\theta = 2\sin \theta \cos \theta \]
5. \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\]
6. \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]
Complete step-by-step solution:
The given function is \[{\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\].
Let us assume \[I = {\left( {\dfrac{{1 + \sin \dfrac{{2\pi }}{9} + i\cos \dfrac{{2\pi }}{9}}}{{1 + \sin \dfrac{{2\pi }}{9} - i\cos \dfrac{{2\pi }}{9}}}} \right)^3}\]
Firstly, we will apply the formula \[\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \] and
\[\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \] in the given function, we get
\[I = {\left( {\dfrac{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) + i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}{{1 + \cos \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right) - i\sin \left( {\dfrac{\pi }{2} - \dfrac{{2\pi }}{9}} \right)}}} \right)^3}\]
Now, we will simplify the sine and cosine function in the above expression, we get
\[I = {\left( {\dfrac{{1 + \cos \dfrac{{5\pi }}{{18}} + i\sin \dfrac{{5\pi }}{{18}}}}{{1 + \cos \dfrac{{5\pi }}{{18}} - i\sin \dfrac{{5\pi }}{{18}}}}} \right)^3}\]
Further, we use the trigonometry identities \[\cos 2\theta = 2{\cos ^2}\theta - 1\] and expressed \[1 + \cos \theta \] as \[2{\cos ^2}\dfrac{\theta }{2}\] and also use \[\sin 2\theta = 2\sin \theta \cos \theta \] and expressed as \[\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} + 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}{{2{{\cos }^2}\dfrac{{5\pi }}{{36}} - 2i\sin \dfrac{{5\pi }}{{36}}\cos \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will taken out \[2\cos \dfrac{{5\pi }}{{36}}\] as common from both numerator and denominator and cancel out, we get
\[\begin{array}{l}I = {\left( {\dfrac{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}}{{2\cos \dfrac{{5\pi }}{{36}}\left( {\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}} \right)}}} \right)^3}\\I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\end{array}\]
Now, we will multiply and divide both numerator and denominator by \[\cos \dfrac{\theta }{2} + i\sin \dfrac{\theta }{2}\], we get
\[I = {\left( {\dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} - i\sin \dfrac{{5\pi }}{{36}}}} \times \dfrac{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}{{\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Further, we will use the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\], we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} - {i^2}{{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
Furthermore, we will use the formula \[{i^2} = - 1\]in the above expression, we get
\[I = {\left( {\dfrac{{{{\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)}^2}}}{{{{\cos }^2}\dfrac{{5\pi }}{{36}} + {{\sin }^2}\dfrac{{5\pi }}{{36}}}}} \right)^3}\]
As we know that \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], we get
\[I = {\left( {\cos \dfrac{{5\pi }}{{36}} + i\sin \dfrac{{5\pi }}{{36}}} \right)^6}\]
Now, we will apply the demoivre’s theorem \[{\left[ {r\left( {\cos \theta + i\sin \theta } \right)} \right]^n} = {r^n}\left( {\cos n\theta + i\sin n\theta } \right)\], we get
\[\begin{array}{l}I = \cos 6 \times \dfrac{{5\pi }}{{36}} + i\sin 6 \times \dfrac{{5\pi }}{{36}}\\I = \cos \dfrac{{5\pi }}{6} + i\sin \dfrac{{5\pi }}{6}\end{array}\]
Further, we will write \[\dfrac{{5\pi }}{6} = \dfrac{\pi }{2} + \dfrac{\pi }{3}\] to simplify the above equation, we get
\[I = \cos \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right) + i\sin \left( {\dfrac{\pi }{2} + \dfrac{\pi }{3}} \right)\]
Furthermore, we will apply the formula \[\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta \] and
\[\sin \left( {\dfrac{\pi }{2} + \theta } \right) = \cos \theta \], we get
\[I = - \sin \dfrac{\pi }{3} + i\cos \dfrac{\pi }{3}\]
As we know that \[\sin \dfrac{\pi }{3} = \dfrac{{\sqrt 3 }}{2}\] and
\[\cos \dfrac{\pi }{3} = \dfrac{1}{2}\], we get
\[I = - \dfrac{1}{2}\left( {\sqrt 3 - i} \right)\]
Hence, the option (3) is correct
Note
In these types of questions, we should remember the formulas of trigonometry formulas and their value and their conversion also. We can also solve this question using exponential form that is \[{e^{i\theta }} = \cos \theta + i\sin \theta \]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
