
The value of \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is
(a) \[3\sqrt 2 \]
(b) \[2\sqrt 2 \]
(c) 3
(d) None of these
Answer
232.8k+ views
Hint:
Here, we will use the property of definite integrals to rewrite the given integral as the sum of three integrals. Then we will change the limits for every trigonometric function and simplify the integral. We will then integrate the functions individually, apply the limits and add the terms to find the answer.
Formula Used: The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
Complete step by step solution:
The integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is a definite integral with the upper limit \[2\pi \] and lower limit 0.
We know that the functions \[\sin x\] and \[\cos x\] are continuous functions.
The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
We will use this property of definite integrals to simplify the given integral.
Therefore, we get
\[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\]
Here, \[\dfrac{\pi }{4}\] and \[\dfrac{{5\pi }}{4}\] lie in the interval \[\left( {0,2\pi } \right)\].
Now, we know that \[\sin x\] goes from 0 to \[\dfrac{1}{{\sqrt 2 }}\], and
\[\cos x\] goes from 1 to \[\dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Thus, \[\cos x\] is greater than \[\sin x\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Therefore, the integral
\[\int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_0^{\pi /4} {\cos x} dx\].
Next, we know that \[\sin x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 1, then to 0, and finally to \[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
The function \[\cos x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 0, then to \[ - 1\], and finally back to
\[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Thus, \[\sin x\] is greater than \[\cos x\] in the interval
\[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Therefore, the integral \[\int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{\pi /4}^{5\pi /4} {\sin x} dx\].
Finally, we know that \[\sin x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to \[ - 1\], and then to 0 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
The function \[\cos x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to 0, and then to 1 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Thus, \[\cos x\] is greater than
\[\sin x\] in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Therefore, the integral \[\int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{5\pi /4}^{2\pi } {\cos x} dx\].
Now, we will rewrite the functions in the given integrals.
Therefore, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\cos x} dx + \int\limits_{\pi /4}^{5\pi /4} {\sin x} dx + \int\limits_{5\pi /4}^{2\pi } {\cos x} dx\]
Integrating the functions, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left. {\left( {\sin x} \right)} \right|_0^{\pi /4} + \left. {\left( { - \cos x} \right)} \right|_{\pi /4}^{5\pi /4} + \left. {\left( {\sin x} \right)} \right|_{5\pi /4}^{2\pi }\]
Substituting the limits, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\sin \dfrac{\pi }{4} - \sin 0} \right) + \left( { - \cos \dfrac{{5\pi }}{4} + \cos \dfrac{\pi }{4}} \right) + \left( {\sin 2\pi - \sin \dfrac{{5\pi }}{4}} \right)\]
Substitute the values of the trigonometric ratios, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\dfrac{1}{{\sqrt 2 }} - 0} \right) + \left[ { - \left( { - \dfrac{1}{{\sqrt 2 }}} \right) + \dfrac{1}{{\sqrt 2 }}} \right] + \left[ {0 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right]\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}\end{array}\]
Adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{4}{{\sqrt 2 }}\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = 2\sqrt 2 \end{array}\]
Therefore, we get the value of the integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] as \[2\sqrt 2 \].
Thus, the correct option is option (b).
Note:
Some common mistakes in this question include using the upper limit in place of the lower limit, and using the property of definite integrals incorrectly. We can also draw a rough graph including the functions \[\sin x\] and \[\cos x\] to determine the minimum and maximum points.
Here, we will use the property of definite integrals to rewrite the given integral as the sum of three integrals. Then we will change the limits for every trigonometric function and simplify the integral. We will then integrate the functions individually, apply the limits and add the terms to find the answer.
Formula Used: The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
Complete step by step solution:
The integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is a definite integral with the upper limit \[2\pi \] and lower limit 0.
We know that the functions \[\sin x\] and \[\cos x\] are continuous functions.
The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
We will use this property of definite integrals to simplify the given integral.
Therefore, we get
\[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\]
Here, \[\dfrac{\pi }{4}\] and \[\dfrac{{5\pi }}{4}\] lie in the interval \[\left( {0,2\pi } \right)\].
Now, we know that \[\sin x\] goes from 0 to \[\dfrac{1}{{\sqrt 2 }}\], and
\[\cos x\] goes from 1 to \[\dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Thus, \[\cos x\] is greater than \[\sin x\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Therefore, the integral
\[\int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_0^{\pi /4} {\cos x} dx\].
Next, we know that \[\sin x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 1, then to 0, and finally to \[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
The function \[\cos x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 0, then to \[ - 1\], and finally back to
\[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Thus, \[\sin x\] is greater than \[\cos x\] in the interval
\[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Therefore, the integral \[\int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{\pi /4}^{5\pi /4} {\sin x} dx\].
Finally, we know that \[\sin x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to \[ - 1\], and then to 0 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
The function \[\cos x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to 0, and then to 1 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Thus, \[\cos x\] is greater than
\[\sin x\] in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Therefore, the integral \[\int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{5\pi /4}^{2\pi } {\cos x} dx\].
Now, we will rewrite the functions in the given integrals.
Therefore, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\cos x} dx + \int\limits_{\pi /4}^{5\pi /4} {\sin x} dx + \int\limits_{5\pi /4}^{2\pi } {\cos x} dx\]
Integrating the functions, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left. {\left( {\sin x} \right)} \right|_0^{\pi /4} + \left. {\left( { - \cos x} \right)} \right|_{\pi /4}^{5\pi /4} + \left. {\left( {\sin x} \right)} \right|_{5\pi /4}^{2\pi }\]
Substituting the limits, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\sin \dfrac{\pi }{4} - \sin 0} \right) + \left( { - \cos \dfrac{{5\pi }}{4} + \cos \dfrac{\pi }{4}} \right) + \left( {\sin 2\pi - \sin \dfrac{{5\pi }}{4}} \right)\]
Substitute the values of the trigonometric ratios, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\dfrac{1}{{\sqrt 2 }} - 0} \right) + \left[ { - \left( { - \dfrac{1}{{\sqrt 2 }}} \right) + \dfrac{1}{{\sqrt 2 }}} \right] + \left[ {0 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right]\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}\end{array}\]
Adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{4}{{\sqrt 2 }}\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = 2\sqrt 2 \end{array}\]
Therefore, we get the value of the integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] as \[2\sqrt 2 \].
Thus, the correct option is option (b).
Note:
Some common mistakes in this question include using the upper limit in place of the lower limit, and using the property of definite integrals incorrectly. We can also draw a rough graph including the functions \[\sin x\] and \[\cos x\] to determine the minimum and maximum points.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

