
The value of \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is
(a) \[3\sqrt 2 \]
(b) \[2\sqrt 2 \]
(c) 3
(d) None of these
Answer
139.5k+ views
Hint:
Here, we will use the property of definite integrals to rewrite the given integral as the sum of three integrals. Then we will change the limits for every trigonometric function and simplify the integral. We will then integrate the functions individually, apply the limits and add the terms to find the answer.
Formula Used: The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
Complete step by step solution:
The integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is a definite integral with the upper limit \[2\pi \] and lower limit 0.
We know that the functions \[\sin x\] and \[\cos x\] are continuous functions.
The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
We will use this property of definite integrals to simplify the given integral.
Therefore, we get
\[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\]
Here, \[\dfrac{\pi }{4}\] and \[\dfrac{{5\pi }}{4}\] lie in the interval \[\left( {0,2\pi } \right)\].
Now, we know that \[\sin x\] goes from 0 to \[\dfrac{1}{{\sqrt 2 }}\], and
\[\cos x\] goes from 1 to \[\dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Thus, \[\cos x\] is greater than \[\sin x\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Therefore, the integral
\[\int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_0^{\pi /4} {\cos x} dx\].
Next, we know that \[\sin x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 1, then to 0, and finally to \[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
The function \[\cos x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 0, then to \[ - 1\], and finally back to
\[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Thus, \[\sin x\] is greater than \[\cos x\] in the interval
\[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Therefore, the integral \[\int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{\pi /4}^{5\pi /4} {\sin x} dx\].
Finally, we know that \[\sin x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to \[ - 1\], and then to 0 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
The function \[\cos x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to 0, and then to 1 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Thus, \[\cos x\] is greater than
\[\sin x\] in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Therefore, the integral \[\int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{5\pi /4}^{2\pi } {\cos x} dx\].
Now, we will rewrite the functions in the given integrals.
Therefore, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\cos x} dx + \int\limits_{\pi /4}^{5\pi /4} {\sin x} dx + \int\limits_{5\pi /4}^{2\pi } {\cos x} dx\]
Integrating the functions, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left. {\left( {\sin x} \right)} \right|_0^{\pi /4} + \left. {\left( { - \cos x} \right)} \right|_{\pi /4}^{5\pi /4} + \left. {\left( {\sin x} \right)} \right|_{5\pi /4}^{2\pi }\]
Substituting the limits, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\sin \dfrac{\pi }{4} - \sin 0} \right) + \left( { - \cos \dfrac{{5\pi }}{4} + \cos \dfrac{\pi }{4}} \right) + \left( {\sin 2\pi - \sin \dfrac{{5\pi }}{4}} \right)\]
Substitute the values of the trigonometric ratios, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\dfrac{1}{{\sqrt 2 }} - 0} \right) + \left[ { - \left( { - \dfrac{1}{{\sqrt 2 }}} \right) + \dfrac{1}{{\sqrt 2 }}} \right] + \left[ {0 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right]\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}\end{array}\]
Adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{4}{{\sqrt 2 }}\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = 2\sqrt 2 \end{array}\]
Therefore, we get the value of the integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] as \[2\sqrt 2 \].
Thus, the correct option is option (b).
Note:
Some common mistakes in this question include using the upper limit in place of the lower limit, and using the property of definite integrals incorrectly. We can also draw a rough graph including the functions \[\sin x\] and \[\cos x\] to determine the minimum and maximum points.
Here, we will use the property of definite integrals to rewrite the given integral as the sum of three integrals. Then we will change the limits for every trigonometric function and simplify the integral. We will then integrate the functions individually, apply the limits and add the terms to find the answer.
Formula Used: The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
Complete step by step solution:
The integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is a definite integral with the upper limit \[2\pi \] and lower limit 0.
We know that the functions \[\sin x\] and \[\cos x\] are continuous functions.
The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
We will use this property of definite integrals to simplify the given integral.
Therefore, we get
\[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\]
Here, \[\dfrac{\pi }{4}\] and \[\dfrac{{5\pi }}{4}\] lie in the interval \[\left( {0,2\pi } \right)\].
Now, we know that \[\sin x\] goes from 0 to \[\dfrac{1}{{\sqrt 2 }}\], and
\[\cos x\] goes from 1 to \[\dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Thus, \[\cos x\] is greater than \[\sin x\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Therefore, the integral
\[\int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_0^{\pi /4} {\cos x} dx\].
Next, we know that \[\sin x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 1, then to 0, and finally to \[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
The function \[\cos x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 0, then to \[ - 1\], and finally back to
\[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Thus, \[\sin x\] is greater than \[\cos x\] in the interval
\[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Therefore, the integral \[\int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{\pi /4}^{5\pi /4} {\sin x} dx\].
Finally, we know that \[\sin x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to \[ - 1\], and then to 0 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
The function \[\cos x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to 0, and then to 1 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Thus, \[\cos x\] is greater than
\[\sin x\] in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Therefore, the integral \[\int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{5\pi /4}^{2\pi } {\cos x} dx\].
Now, we will rewrite the functions in the given integrals.
Therefore, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\cos x} dx + \int\limits_{\pi /4}^{5\pi /4} {\sin x} dx + \int\limits_{5\pi /4}^{2\pi } {\cos x} dx\]
Integrating the functions, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left. {\left( {\sin x} \right)} \right|_0^{\pi /4} + \left. {\left( { - \cos x} \right)} \right|_{\pi /4}^{5\pi /4} + \left. {\left( {\sin x} \right)} \right|_{5\pi /4}^{2\pi }\]
Substituting the limits, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\sin \dfrac{\pi }{4} - \sin 0} \right) + \left( { - \cos \dfrac{{5\pi }}{4} + \cos \dfrac{\pi }{4}} \right) + \left( {\sin 2\pi - \sin \dfrac{{5\pi }}{4}} \right)\]
Substitute the values of the trigonometric ratios, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\dfrac{1}{{\sqrt 2 }} - 0} \right) + \left[ { - \left( { - \dfrac{1}{{\sqrt 2 }}} \right) + \dfrac{1}{{\sqrt 2 }}} \right] + \left[ {0 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right]\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}\end{array}\]
Adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{4}{{\sqrt 2 }}\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = 2\sqrt 2 \end{array}\]
Therefore, we get the value of the integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] as \[2\sqrt 2 \].
Thus, the correct option is option (b).
Note:
Some common mistakes in this question include using the upper limit in place of the lower limit, and using the property of definite integrals incorrectly. We can also draw a rough graph including the functions \[\sin x\] and \[\cos x\] to determine the minimum and maximum points.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Physics Average Value and RMS Value JEE Main 2025

Electromagnetic Waves Chapter - Physics JEE Main

Collision - Important Concepts and Tips for JEE

JEE Main Response Sheet 2025 Released – Download Links, and Check Latest Updates

JEE Mains 2025 Syllabus

Other Pages
NCERT Solutions for Class 12 Maths In Hindi Chapter 2 Inverse Trigonometric Functions In Hindi

JEE Advanced 2025 Notes

CBSE Class 12 English Core Syllabus 2024-25 - Revised PDF Download

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF
