
The value of \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is
(a) \[3\sqrt 2 \]
(b) \[2\sqrt 2 \]
(c) 3
(d) None of these
Answer
131.4k+ views
Hint:
Here, we will use the property of definite integrals to rewrite the given integral as the sum of three integrals. Then we will change the limits for every trigonometric function and simplify the integral. We will then integrate the functions individually, apply the limits and add the terms to find the answer.
Formula Used: The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
Complete step by step solution:
The integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is a definite integral with the upper limit \[2\pi \] and lower limit 0.
We know that the functions \[\sin x\] and \[\cos x\] are continuous functions.
The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
We will use this property of definite integrals to simplify the given integral.
Therefore, we get
\[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\]
Here, \[\dfrac{\pi }{4}\] and \[\dfrac{{5\pi }}{4}\] lie in the interval \[\left( {0,2\pi } \right)\].
Now, we know that \[\sin x\] goes from 0 to \[\dfrac{1}{{\sqrt 2 }}\], and
\[\cos x\] goes from 1 to \[\dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Thus, \[\cos x\] is greater than \[\sin x\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Therefore, the integral
\[\int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_0^{\pi /4} {\cos x} dx\].
Next, we know that \[\sin x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 1, then to 0, and finally to \[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
The function \[\cos x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 0, then to \[ - 1\], and finally back to
\[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Thus, \[\sin x\] is greater than \[\cos x\] in the interval
\[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Therefore, the integral \[\int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{\pi /4}^{5\pi /4} {\sin x} dx\].
Finally, we know that \[\sin x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to \[ - 1\], and then to 0 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
The function \[\cos x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to 0, and then to 1 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Thus, \[\cos x\] is greater than
\[\sin x\] in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Therefore, the integral \[\int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{5\pi /4}^{2\pi } {\cos x} dx\].
Now, we will rewrite the functions in the given integrals.
Therefore, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\cos x} dx + \int\limits_{\pi /4}^{5\pi /4} {\sin x} dx + \int\limits_{5\pi /4}^{2\pi } {\cos x} dx\]
Integrating the functions, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left. {\left( {\sin x} \right)} \right|_0^{\pi /4} + \left. {\left( { - \cos x} \right)} \right|_{\pi /4}^{5\pi /4} + \left. {\left( {\sin x} \right)} \right|_{5\pi /4}^{2\pi }\]
Substituting the limits, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\sin \dfrac{\pi }{4} - \sin 0} \right) + \left( { - \cos \dfrac{{5\pi }}{4} + \cos \dfrac{\pi }{4}} \right) + \left( {\sin 2\pi - \sin \dfrac{{5\pi }}{4}} \right)\]
Substitute the values of the trigonometric ratios, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\dfrac{1}{{\sqrt 2 }} - 0} \right) + \left[ { - \left( { - \dfrac{1}{{\sqrt 2 }}} \right) + \dfrac{1}{{\sqrt 2 }}} \right] + \left[ {0 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right]\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}\end{array}\]
Adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{4}{{\sqrt 2 }}\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = 2\sqrt 2 \end{array}\]
Therefore, we get the value of the integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] as \[2\sqrt 2 \].
Thus, the correct option is option (b).
Note:
Some common mistakes in this question include using the upper limit in place of the lower limit, and using the property of definite integrals incorrectly. We can also draw a rough graph including the functions \[\sin x\] and \[\cos x\] to determine the minimum and maximum points.
Here, we will use the property of definite integrals to rewrite the given integral as the sum of three integrals. Then we will change the limits for every trigonometric function and simplify the integral. We will then integrate the functions individually, apply the limits and add the terms to find the answer.
Formula Used: The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
Complete step by step solution:
The integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] is a definite integral with the upper limit \[2\pi \] and lower limit 0.
We know that the functions \[\sin x\] and \[\cos x\] are continuous functions.
The definite integral \[\int\limits_a^b {f\left( x \right)} dx\] of a continuous function \[f\left( x \right)\] can be written as the sum of the definite integrals \[\int\limits_a^c {f\left( x \right)} dx\] and \[\int\limits_c^b {f\left( x \right)} dx\], where \[c\] lies in the interval \[\left( {a,b} \right)\].
We will use this property of definite integrals to simplify the given integral.
Therefore, we get
\[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx + \int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\]
Here, \[\dfrac{\pi }{4}\] and \[\dfrac{{5\pi }}{4}\] lie in the interval \[\left( {0,2\pi } \right)\].
Now, we know that \[\sin x\] goes from 0 to \[\dfrac{1}{{\sqrt 2 }}\], and
\[\cos x\] goes from 1 to \[\dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Thus, \[\cos x\] is greater than \[\sin x\] in the interval \[\left( {0,\dfrac{\pi }{4}} \right)\].
Therefore, the integral
\[\int\limits_0^{\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_0^{\pi /4} {\cos x} dx\].
Next, we know that \[\sin x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 1, then to 0, and finally to \[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
The function \[\cos x\] goes from \[\dfrac{1}{{\sqrt 2 }}\] to 0, then to \[ - 1\], and finally back to
\[ - \dfrac{1}{{\sqrt 2 }}\] in the interval \[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Thus, \[\sin x\] is greater than \[\cos x\] in the interval
\[\left( {\dfrac{\pi }{4},\dfrac{{5\pi }}{4}} \right)\].
Therefore, the integral \[\int\limits_{\pi /4}^{5\pi /4} {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{\pi /4}^{5\pi /4} {\sin x} dx\].
Finally, we know that \[\sin x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to \[ - 1\], and then to 0 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
The function \[\cos x\] goes from \[ - \dfrac{1}{{\sqrt 2 }}\] to 0, and then to 1 in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Thus, \[\cos x\] is greater than
\[\sin x\] in the interval \[\left( {\dfrac{{5\pi }}{4},2\pi } \right)\].
Therefore, the integral \[\int\limits_{5\pi /4}^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] becomes \[\int\limits_{5\pi /4}^{2\pi } {\cos x} dx\].
Now, we will rewrite the functions in the given integrals.
Therefore, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \int\limits_0^{\pi /4} {\cos x} dx + \int\limits_{\pi /4}^{5\pi /4} {\sin x} dx + \int\limits_{5\pi /4}^{2\pi } {\cos x} dx\]
Integrating the functions, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left. {\left( {\sin x} \right)} \right|_0^{\pi /4} + \left. {\left( { - \cos x} \right)} \right|_{\pi /4}^{5\pi /4} + \left. {\left( {\sin x} \right)} \right|_{5\pi /4}^{2\pi }\]
Substituting the limits, we get
\[ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\sin \dfrac{\pi }{4} - \sin 0} \right) + \left( { - \cos \dfrac{{5\pi }}{4} + \cos \dfrac{\pi }{4}} \right) + \left( {\sin 2\pi - \sin \dfrac{{5\pi }}{4}} \right)\]
Substitute the values of the trigonometric ratios, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \left( {\dfrac{1}{{\sqrt 2 }} - 0} \right) + \left[ { - \left( { - \dfrac{1}{{\sqrt 2 }}} \right) + \dfrac{1}{{\sqrt 2 }}} \right] + \left[ {0 - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)} \right]\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }}\end{array}\]
Adding the terms of the expression, we get
\[\begin{array}{l} \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = \dfrac{4}{{\sqrt 2 }}\\ \Rightarrow \int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx = 2\sqrt 2 \end{array}\]
Therefore, we get the value of the integral \[\int\limits_0^{2\pi } {\max \left( {\sin x,\cos x} \right)} dx\] as \[2\sqrt 2 \].
Thus, the correct option is option (b).
Note:
Some common mistakes in this question include using the upper limit in place of the lower limit, and using the property of definite integrals incorrectly. We can also draw a rough graph including the functions \[\sin x\] and \[\cos x\] to determine the minimum and maximum points.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
JEE Advanced 2024 Syllabus Weightage

CBSE Date Sheet 2025 Class 12 - Download Timetable PDF for FREE Now

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

CBSE Class 10 Hindi Sample Papers with Solutions 2024-25 FREE PDF

CBSE Board Exam Date Sheet Class 10 2025 (OUT): Download Exam Dates PDF

CBSE Class 10 Hindi Course-B Syllabus 2024-25 - Revised PDF Download
