
The value of $\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}$ is
A. $\dfrac{\pi }{3}$
B. $\dfrac{\pi }{2}$
C. $\dfrac{1}{2}$
D. $\dfrac{\pi }{4}$
Answer
217.8k+ views
Hint: In this question, we are to find the given integral. For this, the variable substitution method is applied in the given integral. So, that the required integral will be obtained.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}$
Substituting $x=\sin \theta $
Then, $\theta ={{\sin }^{-1}}x$ and $dx=\cos \theta d\theta $
If $x=0$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(0)=0$
If $x=1$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(1)=\dfrac{\pi }{2}$
Then, the given integral become
$\begin{align}
& I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta d\theta }{\sin \theta +\sqrt{1-{{\sin }^{2}}\theta }}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta \\
\end{align}$
Since the obtained integral is in the form of \[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx}\], we can write
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}==\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta =\dfrac{\pi }{4}$
Option ‘D’ is correct
Note: Here, we applied the substitution method to evaluate the integral. Here we may forget to change the limits. It is just that the limits should be altered as per the substituting variable. This method of solving an integral is an easy way of evaluating a definite integral. This integral can also be solved by using the property $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$. Since we know that $\sin (\dfrac{\pi }{2}-x)=\cos x$, we get $2I=\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta }=\dfrac{\pi }{2}\Rightarrow I=\dfrac{\pi }{4}$. In this way, we can calculate the given integral. In any case, we need to remember that the interval of the integral must be in the form of $[0, a]$.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}$
Substituting $x=\sin \theta $
Then, $\theta ={{\sin }^{-1}}x$ and $dx=\cos \theta d\theta $
If $x=0$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(0)=0$
If $x=1$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(1)=\dfrac{\pi }{2}$
Then, the given integral become
$\begin{align}
& I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta d\theta }{\sin \theta +\sqrt{1-{{\sin }^{2}}\theta }}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta \\
\end{align}$
Since the obtained integral is in the form of \[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx}\], we can write
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}==\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta =\dfrac{\pi }{4}$
Option ‘D’ is correct
Note: Here, we applied the substitution method to evaluate the integral. Here we may forget to change the limits. It is just that the limits should be altered as per the substituting variable. This method of solving an integral is an easy way of evaluating a definite integral. This integral can also be solved by using the property $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$. Since we know that $\sin (\dfrac{\pi }{2}-x)=\cos x$, we get $2I=\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta }=\dfrac{\pi }{2}\Rightarrow I=\dfrac{\pi }{4}$. In this way, we can calculate the given integral. In any case, we need to remember that the interval of the integral must be in the form of $[0, a]$.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

