
The value of $\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}$ is
A. $\dfrac{\pi }{3}$
B. $\dfrac{\pi }{2}$
C. $\dfrac{1}{2}$
D. $\dfrac{\pi }{4}$
Answer
162.9k+ views
Hint: In this question, we are to find the given integral. For this, the variable substitution method is applied in the given integral. So, that the required integral will be obtained.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a3) $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}$
Substituting $x=\sin \theta $
Then, $\theta ={{\sin }^{-1}}x$ and $dx=\cos \theta d\theta $
If $x=0$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(0)=0$
If $x=1$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(1)=\dfrac{\pi }{2}$
Then, the given integral become
$\begin{align}
& I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta d\theta }{\sin \theta +\sqrt{1-{{\sin }^{2}}\theta }}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta \\
\end{align}$
Since the obtained integral is in the form of \[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx}\], we can write
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}==\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta =\dfrac{\pi }{4}$
Option ‘D’ is correct
Note: Here, we applied the substitution method to evaluate the integral. Here we may forget to change the limits. It is just that the limits should be altered as per the substituting variable. This method of solving an integral is an easy way of evaluating a definite integral. This integral can also be solved by using the property $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$. Since we know that $\sin (\dfrac{\pi }{2}-x)=\cos x$, we get $2I=\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta }=\dfrac{\pi }{2}\Rightarrow I=\dfrac{\pi }{4}$. In this way, we can calculate the given integral. In any case, we need to remember that the interval of the integral must be in the form of $[0, a]$.
Formula Used:Definite integral:
Consider a function $f(x)$ is defined on $[a,b]$. If the integral of this function, $\int{f(x)dx=F(x)}$, then $F(b)-F(a)$ is called the definite integral of the function $f(x)$ over $[a,b]$.
I.e.,$\int\limits_{a}^{b}{f(x)dx}=\left. F(x) \right|_{a}^{b}=F(b)-F(a)$
Here $a$ (lower limit) and $b$ (upper limit).
\[\int\limits_{a}^{b}{f(x)dx}=\int\limits_{a}^{b}{f(t)dt}\]
Some of the properties of the definite integrals are:
1) Interchanging the limits: \[\int\limits_{a}^{b}{f(x)dx=-}\int\limits_{b}^{a}{f(x)dx}\]
2) If $a
4) $\int\limits_{-a}^{a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx}$ if $f(x)$ is an even function
$\int\limits_{-a}^{a}{f(x)dx}=0$ if $f(x)$ is an odd function
5) $\begin{align}
& \int\limits_{0}^{2a}{f(x)dx}=2\int\limits_{0}^{a}{f(x)dx};\text{if }f(2a-x)=f(x) \\
& \text{ }=0\text{ if }f(2a-x)=-f(x) \\
\end{align}$
6) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\sin x)}{f(\sin x)+f(\cos x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx=\dfrac{\pi }{4}}}$
7) $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\tan x)}{f(\tan x)+f(\cot x)}dx=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cot x)}{f(\tan x)+f(\cot x)}dx=\dfrac{\pi }{4}}}$
Complete step by step solution:Given integral is
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}$
Substituting $x=\sin \theta $
Then, $\theta ={{\sin }^{-1}}x$ and $dx=\cos \theta d\theta $
If $x=0$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(0)=0$
If $x=1$, then $\theta ={{\sin }^{-1}}x={{\sin }^{-1}}(1)=\dfrac{\pi }{2}$
Then, the given integral become
$\begin{align}
& I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta d\theta }{\sin \theta +\sqrt{1-{{\sin }^{2}}\theta }}} \\
& \text{ }=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta \\
\end{align}$
Since the obtained integral is in the form of \[\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{f(\cos x)}{f(\sin x)+f(\cos x)}dx}\], we can write
$I=\int\limits_{0}^{1}{\dfrac{dx}{x+\sqrt{1-{{x}^{2}}}}}==\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos \theta }{\sin \theta +\cos \theta }}d\theta =\dfrac{\pi }{4}$
Option ‘D’ is correct
Note: Here, we applied the substitution method to evaluate the integral. Here we may forget to change the limits. It is just that the limits should be altered as per the substituting variable. This method of solving an integral is an easy way of evaluating a definite integral. This integral can also be solved by using the property $\int\limits_{0}^{a}{f(x)dx}=\int\limits_{0}^{a}{f(a-x)dx}$. Since we know that $\sin (\dfrac{\pi }{2}-x)=\cos x$, we get $2I=\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta }=\dfrac{\pi }{2}\Rightarrow I=\dfrac{\pi }{4}$. In this way, we can calculate the given integral. In any case, we need to remember that the interval of the integral must be in the form of $[0, a]$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
