
The value of $\int\limits_0^1 {\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} dx$is
1. $\left( {\dfrac{\pi }{2}} \right) + 1$
2. $\left( {\dfrac{\pi }{2}} \right) - 1$
3. $ - 1$
4. $1$
Answer
161.4k+ views
Hint: Assume the given integral is equal to $I$. Then, to solve the integral let $x = \cos 2\theta $ and find the first derivative to put the values in given integral. After putting the values convert the limits and apply trigonometric identities $\cos 2A = 2{\cos ^2}A - 1$, $\cos 2A = 1 - 2{\sin ^2}A$ to solve further.
Formula Used:
Trigonometric formula –
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = 1 - 2{\sin ^2}A$
$\sin 2A = 2\sin A\cos A$
Differentiation formula –
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Integration formula –
$\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $
Complete step by step Solution:
Given that,
$I = \int\limits_0^1 {\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} dx - - - - - \left( 1 \right)$
Let, $x = \cos 2\theta - - - - - \left( 2 \right)$
Differentiate equation (2) with respect to $x$,
$1 = - \sin 2\theta \times \left( {2\dfrac{{d\theta }}{{dx}}} \right)$
$dx = - 2\sin 2\theta d\theta $
Now the Limits will also change,
At $x = 0$
$0 = \cos 2\theta $
$\cos \dfrac{\pi }{2} = \cos 2\theta $
And at $\theta = \dfrac{\pi }{4}$
$x = 1$
$1 = \cos 2\theta $
$\cos {0^ \circ } = \cos 2\theta $
$\theta = 0$
Equation (1) will be
$I = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Applying $1 - \cos 2\theta = 2{\sin ^2}\theta $, $1 + \cos 2\theta = 2{\cos ^2}\theta $ in the above integral
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{2{{\sin }^2}\theta }}{{2{{\cos }^2}\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Now, apply $\sin 2\theta = 2\sin \theta \cos \theta $
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( { - 2\sin 2\theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( {2\sin \theta \cos \theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {2{{\sin }^2}\theta } d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {1 - \cos 2\theta } \right)} d\theta $
On integrating, now we get
$ = - 2\left[ {\theta - \dfrac{{\sin 2\theta }}{2}} \right]_{\dfrac{\pi }{4}}^0$
Put the limits in required integration and use the format of upper limit $ - $lower limit
$ = - 2\left[ {0 - \left( {\dfrac{\pi }{4} - \dfrac{1}{2}} \right)} \right]$
$ = \dfrac{\pi }{2} - 1$
Hence, the correct option is 2.
Note: In such a question, students must have a good knowledge of trigonometric formulas and should also know that the integration of $\sin x$is $ - \cos x$ and $\cos x$ is $\sin x$. Also, if you are taking the value of a given variable as any function don’t forget to convert the limits. Otherwise, the solution will be incorrect. Then enter the integration limit and solve algebraically to get the answer to the question.
Formula Used:
Trigonometric formula –
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = 1 - 2{\sin ^2}A$
$\sin 2A = 2\sin A\cos A$
Differentiation formula –
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Integration formula –
$\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $
Complete step by step Solution:
Given that,
$I = \int\limits_0^1 {\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} dx - - - - - \left( 1 \right)$
Let, $x = \cos 2\theta - - - - - \left( 2 \right)$
Differentiate equation (2) with respect to $x$,
$1 = - \sin 2\theta \times \left( {2\dfrac{{d\theta }}{{dx}}} \right)$
$dx = - 2\sin 2\theta d\theta $
Now the Limits will also change,
At $x = 0$
$0 = \cos 2\theta $
$\cos \dfrac{\pi }{2} = \cos 2\theta $
And at $\theta = \dfrac{\pi }{4}$
$x = 1$
$1 = \cos 2\theta $
$\cos {0^ \circ } = \cos 2\theta $
$\theta = 0$
Equation (1) will be
$I = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Applying $1 - \cos 2\theta = 2{\sin ^2}\theta $, $1 + \cos 2\theta = 2{\cos ^2}\theta $ in the above integral
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{2{{\sin }^2}\theta }}{{2{{\cos }^2}\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Now, apply $\sin 2\theta = 2\sin \theta \cos \theta $
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( { - 2\sin 2\theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( {2\sin \theta \cos \theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {2{{\sin }^2}\theta } d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {1 - \cos 2\theta } \right)} d\theta $
On integrating, now we get
$ = - 2\left[ {\theta - \dfrac{{\sin 2\theta }}{2}} \right]_{\dfrac{\pi }{4}}^0$
Put the limits in required integration and use the format of upper limit $ - $lower limit
$ = - 2\left[ {0 - \left( {\dfrac{\pi }{4} - \dfrac{1}{2}} \right)} \right]$
$ = \dfrac{\pi }{2} - 1$
Hence, the correct option is 2.
Note: In such a question, students must have a good knowledge of trigonometric formulas and should also know that the integration of $\sin x$is $ - \cos x$ and $\cos x$ is $\sin x$. Also, if you are taking the value of a given variable as any function don’t forget to convert the limits. Otherwise, the solution will be incorrect. Then enter the integration limit and solve algebraically to get the answer to the question.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
