
The value of $\int\limits_0^1 {\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} dx$is
1. $\left( {\dfrac{\pi }{2}} \right) + 1$
2. $\left( {\dfrac{\pi }{2}} \right) - 1$
3. $ - 1$
4. $1$
Answer
232.8k+ views
Hint: Assume the given integral is equal to $I$. Then, to solve the integral let $x = \cos 2\theta $ and find the first derivative to put the values in given integral. After putting the values convert the limits and apply trigonometric identities $\cos 2A = 2{\cos ^2}A - 1$, $\cos 2A = 1 - 2{\sin ^2}A$ to solve further.
Formula Used:
Trigonometric formula –
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = 1 - 2{\sin ^2}A$
$\sin 2A = 2\sin A\cos A$
Differentiation formula –
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Integration formula –
$\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $
Complete step by step Solution:
Given that,
$I = \int\limits_0^1 {\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} dx - - - - - \left( 1 \right)$
Let, $x = \cos 2\theta - - - - - \left( 2 \right)$
Differentiate equation (2) with respect to $x$,
$1 = - \sin 2\theta \times \left( {2\dfrac{{d\theta }}{{dx}}} \right)$
$dx = - 2\sin 2\theta d\theta $
Now the Limits will also change,
At $x = 0$
$0 = \cos 2\theta $
$\cos \dfrac{\pi }{2} = \cos 2\theta $
And at $\theta = \dfrac{\pi }{4}$
$x = 1$
$1 = \cos 2\theta $
$\cos {0^ \circ } = \cos 2\theta $
$\theta = 0$
Equation (1) will be
$I = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Applying $1 - \cos 2\theta = 2{\sin ^2}\theta $, $1 + \cos 2\theta = 2{\cos ^2}\theta $ in the above integral
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{2{{\sin }^2}\theta }}{{2{{\cos }^2}\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Now, apply $\sin 2\theta = 2\sin \theta \cos \theta $
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( { - 2\sin 2\theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( {2\sin \theta \cos \theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {2{{\sin }^2}\theta } d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {1 - \cos 2\theta } \right)} d\theta $
On integrating, now we get
$ = - 2\left[ {\theta - \dfrac{{\sin 2\theta }}{2}} \right]_{\dfrac{\pi }{4}}^0$
Put the limits in required integration and use the format of upper limit $ - $lower limit
$ = - 2\left[ {0 - \left( {\dfrac{\pi }{4} - \dfrac{1}{2}} \right)} \right]$
$ = \dfrac{\pi }{2} - 1$
Hence, the correct option is 2.
Note: In such a question, students must have a good knowledge of trigonometric formulas and should also know that the integration of $\sin x$is $ - \cos x$ and $\cos x$ is $\sin x$. Also, if you are taking the value of a given variable as any function don’t forget to convert the limits. Otherwise, the solution will be incorrect. Then enter the integration limit and solve algebraically to get the answer to the question.
Formula Used:
Trigonometric formula –
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = 1 - 2{\sin ^2}A$
$\sin 2A = 2\sin A\cos A$
Differentiation formula –
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Integration formula –
$\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $
Complete step by step Solution:
Given that,
$I = \int\limits_0^1 {\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} dx - - - - - \left( 1 \right)$
Let, $x = \cos 2\theta - - - - - \left( 2 \right)$
Differentiate equation (2) with respect to $x$,
$1 = - \sin 2\theta \times \left( {2\dfrac{{d\theta }}{{dx}}} \right)$
$dx = - 2\sin 2\theta d\theta $
Now the Limits will also change,
At $x = 0$
$0 = \cos 2\theta $
$\cos \dfrac{\pi }{2} = \cos 2\theta $
And at $\theta = \dfrac{\pi }{4}$
$x = 1$
$1 = \cos 2\theta $
$\cos {0^ \circ } = \cos 2\theta $
$\theta = 0$
Equation (1) will be
$I = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Applying $1 - \cos 2\theta = 2{\sin ^2}\theta $, $1 + \cos 2\theta = 2{\cos ^2}\theta $ in the above integral
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{2{{\sin }^2}\theta }}{{2{{\cos }^2}\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Now, apply $\sin 2\theta = 2\sin \theta \cos \theta $
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( { - 2\sin 2\theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( {2\sin \theta \cos \theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {2{{\sin }^2}\theta } d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {1 - \cos 2\theta } \right)} d\theta $
On integrating, now we get
$ = - 2\left[ {\theta - \dfrac{{\sin 2\theta }}{2}} \right]_{\dfrac{\pi }{4}}^0$
Put the limits in required integration and use the format of upper limit $ - $lower limit
$ = - 2\left[ {0 - \left( {\dfrac{\pi }{4} - \dfrac{1}{2}} \right)} \right]$
$ = \dfrac{\pi }{2} - 1$
Hence, the correct option is 2.
Note: In such a question, students must have a good knowledge of trigonometric formulas and should also know that the integration of $\sin x$is $ - \cos x$ and $\cos x$ is $\sin x$. Also, if you are taking the value of a given variable as any function don’t forget to convert the limits. Otherwise, the solution will be incorrect. Then enter the integration limit and solve algebraically to get the answer to the question.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

