
The value of $\int\limits_0^1 {\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} dx$is
1. $\left( {\dfrac{\pi }{2}} \right) + 1$
2. $\left( {\dfrac{\pi }{2}} \right) - 1$
3. $ - 1$
4. $1$
Answer
216.3k+ views
Hint: Assume the given integral is equal to $I$. Then, to solve the integral let $x = \cos 2\theta $ and find the first derivative to put the values in given integral. After putting the values convert the limits and apply trigonometric identities $\cos 2A = 2{\cos ^2}A - 1$, $\cos 2A = 1 - 2{\sin ^2}A$ to solve further.
Formula Used:
Trigonometric formula –
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = 1 - 2{\sin ^2}A$
$\sin 2A = 2\sin A\cos A$
Differentiation formula –
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Integration formula –
$\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $
Complete step by step Solution:
Given that,
$I = \int\limits_0^1 {\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} dx - - - - - \left( 1 \right)$
Let, $x = \cos 2\theta - - - - - \left( 2 \right)$
Differentiate equation (2) with respect to $x$,
$1 = - \sin 2\theta \times \left( {2\dfrac{{d\theta }}{{dx}}} \right)$
$dx = - 2\sin 2\theta d\theta $
Now the Limits will also change,
At $x = 0$
$0 = \cos 2\theta $
$\cos \dfrac{\pi }{2} = \cos 2\theta $
And at $\theta = \dfrac{\pi }{4}$
$x = 1$
$1 = \cos 2\theta $
$\cos {0^ \circ } = \cos 2\theta $
$\theta = 0$
Equation (1) will be
$I = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Applying $1 - \cos 2\theta = 2{\sin ^2}\theta $, $1 + \cos 2\theta = 2{\cos ^2}\theta $ in the above integral
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{2{{\sin }^2}\theta }}{{2{{\cos }^2}\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Now, apply $\sin 2\theta = 2\sin \theta \cos \theta $
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( { - 2\sin 2\theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( {2\sin \theta \cos \theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {2{{\sin }^2}\theta } d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {1 - \cos 2\theta } \right)} d\theta $
On integrating, now we get
$ = - 2\left[ {\theta - \dfrac{{\sin 2\theta }}{2}} \right]_{\dfrac{\pi }{4}}^0$
Put the limits in required integration and use the format of upper limit $ - $lower limit
$ = - 2\left[ {0 - \left( {\dfrac{\pi }{4} - \dfrac{1}{2}} \right)} \right]$
$ = \dfrac{\pi }{2} - 1$
Hence, the correct option is 2.
Note: In such a question, students must have a good knowledge of trigonometric formulas and should also know that the integration of $\sin x$is $ - \cos x$ and $\cos x$ is $\sin x$. Also, if you are taking the value of a given variable as any function don’t forget to convert the limits. Otherwise, the solution will be incorrect. Then enter the integration limit and solve algebraically to get the answer to the question.
Formula Used:
Trigonometric formula –
$\cos 2A = 2{\cos ^2}A - 1$
$\cos 2A = 1 - 2{\sin ^2}A$
$\sin 2A = 2\sin A\cos A$
Differentiation formula –
$\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}$
Integration formula –
$\int {f\left( {g\left( x \right)} \right)dx = \dfrac{{\int {f\left( {g\left( x \right)} \right)dx} }}{{\dfrac{d}{{dx}}g\left( x \right)}}} $
Complete step by step Solution:
Given that,
$I = \int\limits_0^1 {\left[ {\sqrt {\dfrac{{1 - x}}{{1 + x}}} } \right]} dx - - - - - \left( 1 \right)$
Let, $x = \cos 2\theta - - - - - \left( 2 \right)$
Differentiate equation (2) with respect to $x$,
$1 = - \sin 2\theta \times \left( {2\dfrac{{d\theta }}{{dx}}} \right)$
$dx = - 2\sin 2\theta d\theta $
Now the Limits will also change,
At $x = 0$
$0 = \cos 2\theta $
$\cos \dfrac{\pi }{2} = \cos 2\theta $
And at $\theta = \dfrac{\pi }{4}$
$x = 1$
$1 = \cos 2\theta $
$\cos {0^ \circ } = \cos 2\theta $
$\theta = 0$
Equation (1) will be
$I = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Applying $1 - \cos 2\theta = 2{\sin ^2}\theta $, $1 + \cos 2\theta = 2{\cos ^2}\theta $ in the above integral
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\sqrt {\dfrac{{2{{\sin }^2}\theta }}{{2{{\cos }^2}\theta }}} \left( { - 2\sin 2\theta } \right)} d\theta $
Now, apply $\sin 2\theta = 2\sin \theta \cos \theta $
$ = \int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( { - 2\sin 2\theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)\left( {2\sin \theta \cos \theta } \right)} d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {2{{\sin }^2}\theta } d\theta $
$ = - 2\int\limits_{\dfrac{\pi }{4}}^0 {\left( {1 - \cos 2\theta } \right)} d\theta $
On integrating, now we get
$ = - 2\left[ {\theta - \dfrac{{\sin 2\theta }}{2}} \right]_{\dfrac{\pi }{4}}^0$
Put the limits in required integration and use the format of upper limit $ - $lower limit
$ = - 2\left[ {0 - \left( {\dfrac{\pi }{4} - \dfrac{1}{2}} \right)} \right]$
$ = \dfrac{\pi }{2} - 1$
Hence, the correct option is 2.
Note: In such a question, students must have a good knowledge of trigonometric formulas and should also know that the integration of $\sin x$is $ - \cos x$ and $\cos x$ is $\sin x$. Also, if you are taking the value of a given variable as any function don’t forget to convert the limits. Otherwise, the solution will be incorrect. Then enter the integration limit and solve algebraically to get the answer to the question.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

