Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

The value of $\int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} $ is equal to (where [ ] denotes the greatest integer function).
 $\eqalign{
  & A)\,\,\,\,\dfrac{1}{2} \cr
  & B)\,\,\,\,1 \cr
  & C)\,\,\,\,\dfrac{3}{2} \cr
  & D)\,\,\,\,2 \cr} $.

Answer
VerifiedVerified
138k+ views
Hint:
[x] denotes the greatest integer which is less than or equal to x.As an example [2.5]=2 and [-2.5]=(-3) .We have to split the whole integral w.r.t. their limits and find the integrand there for solving it easily.

Complete step by step solution:
Step1:
                  $$\eqalign{
  & For\,\,\, - 2 < x < - 1\,\, \Rightarrow [x] = - 2 \Rightarrow x - [x] = x + 2 \cr
  & Then,\,\,1 < - x < 2\, \Rightarrow [ - x] = 1 \Rightarrow - x - [ - x] = - x - 1 \cr
  & \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
  & = \min \left\{ {x + 2, - x - 1} \right\} \cr
  & = x + 2,\,\, - 2 < x \leqslant - \dfrac{3}{2} \cr
  & = - x - 1,\,\, - \dfrac{3}{2} < x < - 1 \cr} $$
Step2:
                 $$\eqalign{
  & For\,\,\, - 1 < x < 0\,\, \Rightarrow [x] = - 1 \Rightarrow x - [x] = x + 1 \cr
  & Then,\,\,0 < - x < 1\, \Rightarrow [ - x] = 0 \Rightarrow - x - [ - x] = - x \cr
  & \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
  & = \min \left\{ {x + 1, - x} \right\} \cr
  & = x + 1,\,\, - 1 < x \leqslant - \dfrac{1}{2} \cr
  & = - x,\,\, - \dfrac{1}{2} < x < 0 \cr} $$
Step3:
                 $$\eqalign{
  & For\,\,\,0 < x < 1\,\, \Rightarrow [x] = 0 \Rightarrow x - [x] = x \cr
  & Then,\,\, - 1 < - x < 0\, \Rightarrow [ - x] = - 1 \Rightarrow - x - [ - x] = - x + 1 \cr
  & \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
  & = \min \left\{ {x,1 - x} \right\} \cr
  & = x,\,\,0 < x \leqslant \dfrac{1}{2} \cr
  & = 1 - x,\,\,\dfrac{1}{2} < x < 1 \cr} $$
Step4:
                $$\eqalign{
  & For\,\,\,1 < x < 2\,\, \Rightarrow [x] = 1 \Rightarrow x - [x] = x - 1 \cr
  & Then,\,\, - 2 < - 1 < 0\, \Rightarrow [ - x] = - 2 \Rightarrow - x - [ - x] = - x + 2 \cr
  & \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
  & = \min \left\{ {x - 1,2 - x} \right\} \cr
  & = x - 1,\,\,1 < x \leqslant \dfrac{3}{2} \cr
  & = 2 - x,\,\,\dfrac{3}{2} < x < 2 \cr} $$
Step5:Using the above value of the integrand in different range and the property of definite integral,
               $\eqalign{
  & \int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} \cr
  & = \int\limits_{ - 2}^{\,\dfrac{{ - 3}}{2}} {(x + 2)dx} \, + \,\int\limits_{\,\dfrac{{ - 3}}{2}}^{\, - 1} {( - x - 1)dx} \, + \int\limits_{ - 1}^{\,\dfrac{{ - 1}}{2}} {(x + 1)dx} \, + \int\limits_{\dfrac{{ - 1}}{2}}^{\,0} {( - x)dx} \, + \int\limits_0^{\,\dfrac{1}{2}} {xdx} \, + \int\limits_{\dfrac{1}{2}}^{\,1} {(1 - x)dx} \, + \int\limits_1^{\,\dfrac{3}{2}} {(x - 1)dx} \, + \int\limits_{\dfrac{3}{2}}^{\,2} {(2 - x)dx} \cr
  & = \dfrac{1}{2}\left\{ {\left[ {{{(x + 2)}^2}} \right]_{ - 2}^{ - 1.5} - \left[ {{{(x + 1)}^2}} \right]_{ - 1.5}^{ - 1} + \left[ {{{(x + 1)}^2}} \right]_{ - 1}^{ - 0.5} - \left[ {{x^2}} \right]_{ - 0.5}^0 + \left[ {{x^2}} \right]_0^{0.5} - \left[ {{{(1 - x)}^2}} \right]_{0.5}^1 + \left[ {{{(x - 1)}^2}} \right]_1^{1.5} - \left[ {{{(2 - x)}^2}} \right]_{1.5}^2} \right\} \cr
  & = \dfrac{1}{2}\left\{ {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} \right\} \cr
  & = \dfrac{1}{2} \times 8 \times \dfrac{1}{4} \cr
  & = 1 \cr} $

Hence, the option B) is correct here.

Note:
In most of the questions on greatest integer function, we have to split into intervals. In each of the intervals, we have to define the function. This will be easy for solving these questions.