
The value of $\int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} $ is equal to (where [ ] denotes the greatest integer function).
$\eqalign{
& A)\,\,\,\,\dfrac{1}{2} \cr
& B)\,\,\,\,1 \cr
& C)\,\,\,\,\dfrac{3}{2} \cr
& D)\,\,\,\,2 \cr} $.
Answer
233.1k+ views
Hint:
[x] denotes the greatest integer which is less than or equal to x.As an example [2.5]=2 and [-2.5]=(-3) .We have to split the whole integral w.r.t. their limits and find the integrand there for solving it easily.
Complete step by step solution:
Step1:
$$\eqalign{
& For\,\,\, - 2 < x < - 1\,\, \Rightarrow [x] = - 2 \Rightarrow x - [x] = x + 2 \cr
& Then,\,\,1 < - x < 2\, \Rightarrow [ - x] = 1 \Rightarrow - x - [ - x] = - x - 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 2, - x - 1} \right\} \cr
& = x + 2,\,\, - 2 < x \leqslant - \dfrac{3}{2} \cr
& = - x - 1,\,\, - \dfrac{3}{2} < x < - 1 \cr} $$
Step2:
$$\eqalign{
& For\,\,\, - 1 < x < 0\,\, \Rightarrow [x] = - 1 \Rightarrow x - [x] = x + 1 \cr
& Then,\,\,0 < - x < 1\, \Rightarrow [ - x] = 0 \Rightarrow - x - [ - x] = - x \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 1, - x} \right\} \cr
& = x + 1,\,\, - 1 < x \leqslant - \dfrac{1}{2} \cr
& = - x,\,\, - \dfrac{1}{2} < x < 0 \cr} $$
Step3:
$$\eqalign{
& For\,\,\,0 < x < 1\,\, \Rightarrow [x] = 0 \Rightarrow x - [x] = x \cr
& Then,\,\, - 1 < - x < 0\, \Rightarrow [ - x] = - 1 \Rightarrow - x - [ - x] = - x + 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x,1 - x} \right\} \cr
& = x,\,\,0 < x \leqslant \dfrac{1}{2} \cr
& = 1 - x,\,\,\dfrac{1}{2} < x < 1 \cr} $$
Step4:
$$\eqalign{
& For\,\,\,1 < x < 2\,\, \Rightarrow [x] = 1 \Rightarrow x - [x] = x - 1 \cr
& Then,\,\, - 2 < - 1 < 0\, \Rightarrow [ - x] = - 2 \Rightarrow - x - [ - x] = - x + 2 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x - 1,2 - x} \right\} \cr
& = x - 1,\,\,1 < x \leqslant \dfrac{3}{2} \cr
& = 2 - x,\,\,\dfrac{3}{2} < x < 2 \cr} $$
Step5:Using the above value of the integrand in different range and the property of definite integral,
$\eqalign{
& \int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} \cr
& = \int\limits_{ - 2}^{\,\dfrac{{ - 3}}{2}} {(x + 2)dx} \, + \,\int\limits_{\,\dfrac{{ - 3}}{2}}^{\, - 1} {( - x - 1)dx} \, + \int\limits_{ - 1}^{\,\dfrac{{ - 1}}{2}} {(x + 1)dx} \, + \int\limits_{\dfrac{{ - 1}}{2}}^{\,0} {( - x)dx} \, + \int\limits_0^{\,\dfrac{1}{2}} {xdx} \, + \int\limits_{\dfrac{1}{2}}^{\,1} {(1 - x)dx} \, + \int\limits_1^{\,\dfrac{3}{2}} {(x - 1)dx} \, + \int\limits_{\dfrac{3}{2}}^{\,2} {(2 - x)dx} \cr
& = \dfrac{1}{2}\left\{ {\left[ {{{(x + 2)}^2}} \right]_{ - 2}^{ - 1.5} - \left[ {{{(x + 1)}^2}} \right]_{ - 1.5}^{ - 1} + \left[ {{{(x + 1)}^2}} \right]_{ - 1}^{ - 0.5} - \left[ {{x^2}} \right]_{ - 0.5}^0 + \left[ {{x^2}} \right]_0^{0.5} - \left[ {{{(1 - x)}^2}} \right]_{0.5}^1 + \left[ {{{(x - 1)}^2}} \right]_1^{1.5} - \left[ {{{(2 - x)}^2}} \right]_{1.5}^2} \right\} \cr
& = \dfrac{1}{2}\left\{ {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} \right\} \cr
& = \dfrac{1}{2} \times 8 \times \dfrac{1}{4} \cr
& = 1 \cr} $
Hence, the option B) is correct here.
Note:
In most of the questions on greatest integer function, we have to split into intervals. In each of the intervals, we have to define the function. This will be easy for solving these questions.
[x] denotes the greatest integer which is less than or equal to x.As an example [2.5]=2 and [-2.5]=(-3) .We have to split the whole integral w.r.t. their limits and find the integrand there for solving it easily.
Complete step by step solution:
Step1:
$$\eqalign{
& For\,\,\, - 2 < x < - 1\,\, \Rightarrow [x] = - 2 \Rightarrow x - [x] = x + 2 \cr
& Then,\,\,1 < - x < 2\, \Rightarrow [ - x] = 1 \Rightarrow - x - [ - x] = - x - 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 2, - x - 1} \right\} \cr
& = x + 2,\,\, - 2 < x \leqslant - \dfrac{3}{2} \cr
& = - x - 1,\,\, - \dfrac{3}{2} < x < - 1 \cr} $$
Step2:
$$\eqalign{
& For\,\,\, - 1 < x < 0\,\, \Rightarrow [x] = - 1 \Rightarrow x - [x] = x + 1 \cr
& Then,\,\,0 < - x < 1\, \Rightarrow [ - x] = 0 \Rightarrow - x - [ - x] = - x \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 1, - x} \right\} \cr
& = x + 1,\,\, - 1 < x \leqslant - \dfrac{1}{2} \cr
& = - x,\,\, - \dfrac{1}{2} < x < 0 \cr} $$
Step3:
$$\eqalign{
& For\,\,\,0 < x < 1\,\, \Rightarrow [x] = 0 \Rightarrow x - [x] = x \cr
& Then,\,\, - 1 < - x < 0\, \Rightarrow [ - x] = - 1 \Rightarrow - x - [ - x] = - x + 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x,1 - x} \right\} \cr
& = x,\,\,0 < x \leqslant \dfrac{1}{2} \cr
& = 1 - x,\,\,\dfrac{1}{2} < x < 1 \cr} $$
Step4:
$$\eqalign{
& For\,\,\,1 < x < 2\,\, \Rightarrow [x] = 1 \Rightarrow x - [x] = x - 1 \cr
& Then,\,\, - 2 < - 1 < 0\, \Rightarrow [ - x] = - 2 \Rightarrow - x - [ - x] = - x + 2 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x - 1,2 - x} \right\} \cr
& = x - 1,\,\,1 < x \leqslant \dfrac{3}{2} \cr
& = 2 - x,\,\,\dfrac{3}{2} < x < 2 \cr} $$
Step5:Using the above value of the integrand in different range and the property of definite integral,
$\eqalign{
& \int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} \cr
& = \int\limits_{ - 2}^{\,\dfrac{{ - 3}}{2}} {(x + 2)dx} \, + \,\int\limits_{\,\dfrac{{ - 3}}{2}}^{\, - 1} {( - x - 1)dx} \, + \int\limits_{ - 1}^{\,\dfrac{{ - 1}}{2}} {(x + 1)dx} \, + \int\limits_{\dfrac{{ - 1}}{2}}^{\,0} {( - x)dx} \, + \int\limits_0^{\,\dfrac{1}{2}} {xdx} \, + \int\limits_{\dfrac{1}{2}}^{\,1} {(1 - x)dx} \, + \int\limits_1^{\,\dfrac{3}{2}} {(x - 1)dx} \, + \int\limits_{\dfrac{3}{2}}^{\,2} {(2 - x)dx} \cr
& = \dfrac{1}{2}\left\{ {\left[ {{{(x + 2)}^2}} \right]_{ - 2}^{ - 1.5} - \left[ {{{(x + 1)}^2}} \right]_{ - 1.5}^{ - 1} + \left[ {{{(x + 1)}^2}} \right]_{ - 1}^{ - 0.5} - \left[ {{x^2}} \right]_{ - 0.5}^0 + \left[ {{x^2}} \right]_0^{0.5} - \left[ {{{(1 - x)}^2}} \right]_{0.5}^1 + \left[ {{{(x - 1)}^2}} \right]_1^{1.5} - \left[ {{{(2 - x)}^2}} \right]_{1.5}^2} \right\} \cr
& = \dfrac{1}{2}\left\{ {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} \right\} \cr
& = \dfrac{1}{2} \times 8 \times \dfrac{1}{4} \cr
& = 1 \cr} $
Hence, the option B) is correct here.
Note:
In most of the questions on greatest integer function, we have to split into intervals. In each of the intervals, we have to define the function. This will be easy for solving these questions.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

