
The value of $\int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} $ is equal to (where [ ] denotes the greatest integer function).
$\eqalign{
& A)\,\,\,\,\dfrac{1}{2} \cr
& B)\,\,\,\,1 \cr
& C)\,\,\,\,\dfrac{3}{2} \cr
& D)\,\,\,\,2 \cr} $.
Answer
138k+ views
Hint:
[x] denotes the greatest integer which is less than or equal to x.As an example [2.5]=2 and [-2.5]=(-3) .We have to split the whole integral w.r.t. their limits and find the integrand there for solving it easily.
Complete step by step solution:
Step1:
$$\eqalign{
& For\,\,\, - 2 < x < - 1\,\, \Rightarrow [x] = - 2 \Rightarrow x - [x] = x + 2 \cr
& Then,\,\,1 < - x < 2\, \Rightarrow [ - x] = 1 \Rightarrow - x - [ - x] = - x - 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 2, - x - 1} \right\} \cr
& = x + 2,\,\, - 2 < x \leqslant - \dfrac{3}{2} \cr
& = - x - 1,\,\, - \dfrac{3}{2} < x < - 1 \cr} $$
Step2:
$$\eqalign{
& For\,\,\, - 1 < x < 0\,\, \Rightarrow [x] = - 1 \Rightarrow x - [x] = x + 1 \cr
& Then,\,\,0 < - x < 1\, \Rightarrow [ - x] = 0 \Rightarrow - x - [ - x] = - x \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 1, - x} \right\} \cr
& = x + 1,\,\, - 1 < x \leqslant - \dfrac{1}{2} \cr
& = - x,\,\, - \dfrac{1}{2} < x < 0 \cr} $$
Step3:
$$\eqalign{
& For\,\,\,0 < x < 1\,\, \Rightarrow [x] = 0 \Rightarrow x - [x] = x \cr
& Then,\,\, - 1 < - x < 0\, \Rightarrow [ - x] = - 1 \Rightarrow - x - [ - x] = - x + 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x,1 - x} \right\} \cr
& = x,\,\,0 < x \leqslant \dfrac{1}{2} \cr
& = 1 - x,\,\,\dfrac{1}{2} < x < 1 \cr} $$
Step4:
$$\eqalign{
& For\,\,\,1 < x < 2\,\, \Rightarrow [x] = 1 \Rightarrow x - [x] = x - 1 \cr
& Then,\,\, - 2 < - 1 < 0\, \Rightarrow [ - x] = - 2 \Rightarrow - x - [ - x] = - x + 2 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x - 1,2 - x} \right\} \cr
& = x - 1,\,\,1 < x \leqslant \dfrac{3}{2} \cr
& = 2 - x,\,\,\dfrac{3}{2} < x < 2 \cr} $$
Step5:Using the above value of the integrand in different range and the property of definite integral,
$\eqalign{
& \int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} \cr
& = \int\limits_{ - 2}^{\,\dfrac{{ - 3}}{2}} {(x + 2)dx} \, + \,\int\limits_{\,\dfrac{{ - 3}}{2}}^{\, - 1} {( - x - 1)dx} \, + \int\limits_{ - 1}^{\,\dfrac{{ - 1}}{2}} {(x + 1)dx} \, + \int\limits_{\dfrac{{ - 1}}{2}}^{\,0} {( - x)dx} \, + \int\limits_0^{\,\dfrac{1}{2}} {xdx} \, + \int\limits_{\dfrac{1}{2}}^{\,1} {(1 - x)dx} \, + \int\limits_1^{\,\dfrac{3}{2}} {(x - 1)dx} \, + \int\limits_{\dfrac{3}{2}}^{\,2} {(2 - x)dx} \cr
& = \dfrac{1}{2}\left\{ {\left[ {{{(x + 2)}^2}} \right]_{ - 2}^{ - 1.5} - \left[ {{{(x + 1)}^2}} \right]_{ - 1.5}^{ - 1} + \left[ {{{(x + 1)}^2}} \right]_{ - 1}^{ - 0.5} - \left[ {{x^2}} \right]_{ - 0.5}^0 + \left[ {{x^2}} \right]_0^{0.5} - \left[ {{{(1 - x)}^2}} \right]_{0.5}^1 + \left[ {{{(x - 1)}^2}} \right]_1^{1.5} - \left[ {{{(2 - x)}^2}} \right]_{1.5}^2} \right\} \cr
& = \dfrac{1}{2}\left\{ {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} \right\} \cr
& = \dfrac{1}{2} \times 8 \times \dfrac{1}{4} \cr
& = 1 \cr} $
Hence, the option B) is correct here.
Note:
In most of the questions on greatest integer function, we have to split into intervals. In each of the intervals, we have to define the function. This will be easy for solving these questions.
[x] denotes the greatest integer which is less than or equal to x.As an example [2.5]=2 and [-2.5]=(-3) .We have to split the whole integral w.r.t. their limits and find the integrand there for solving it easily.
Complete step by step solution:
Step1:
$$\eqalign{
& For\,\,\, - 2 < x < - 1\,\, \Rightarrow [x] = - 2 \Rightarrow x - [x] = x + 2 \cr
& Then,\,\,1 < - x < 2\, \Rightarrow [ - x] = 1 \Rightarrow - x - [ - x] = - x - 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 2, - x - 1} \right\} \cr
& = x + 2,\,\, - 2 < x \leqslant - \dfrac{3}{2} \cr
& = - x - 1,\,\, - \dfrac{3}{2} < x < - 1 \cr} $$
Step2:
$$\eqalign{
& For\,\,\, - 1 < x < 0\,\, \Rightarrow [x] = - 1 \Rightarrow x - [x] = x + 1 \cr
& Then,\,\,0 < - x < 1\, \Rightarrow [ - x] = 0 \Rightarrow - x - [ - x] = - x \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 1, - x} \right\} \cr
& = x + 1,\,\, - 1 < x \leqslant - \dfrac{1}{2} \cr
& = - x,\,\, - \dfrac{1}{2} < x < 0 \cr} $$
Step3:
$$\eqalign{
& For\,\,\,0 < x < 1\,\, \Rightarrow [x] = 0 \Rightarrow x - [x] = x \cr
& Then,\,\, - 1 < - x < 0\, \Rightarrow [ - x] = - 1 \Rightarrow - x - [ - x] = - x + 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x,1 - x} \right\} \cr
& = x,\,\,0 < x \leqslant \dfrac{1}{2} \cr
& = 1 - x,\,\,\dfrac{1}{2} < x < 1 \cr} $$
Step4:
$$\eqalign{
& For\,\,\,1 < x < 2\,\, \Rightarrow [x] = 1 \Rightarrow x - [x] = x - 1 \cr
& Then,\,\, - 2 < - 1 < 0\, \Rightarrow [ - x] = - 2 \Rightarrow - x - [ - x] = - x + 2 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x - 1,2 - x} \right\} \cr
& = x - 1,\,\,1 < x \leqslant \dfrac{3}{2} \cr
& = 2 - x,\,\,\dfrac{3}{2} < x < 2 \cr} $$
Step5:Using the above value of the integrand in different range and the property of definite integral,
$\eqalign{
& \int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} \cr
& = \int\limits_{ - 2}^{\,\dfrac{{ - 3}}{2}} {(x + 2)dx} \, + \,\int\limits_{\,\dfrac{{ - 3}}{2}}^{\, - 1} {( - x - 1)dx} \, + \int\limits_{ - 1}^{\,\dfrac{{ - 1}}{2}} {(x + 1)dx} \, + \int\limits_{\dfrac{{ - 1}}{2}}^{\,0} {( - x)dx} \, + \int\limits_0^{\,\dfrac{1}{2}} {xdx} \, + \int\limits_{\dfrac{1}{2}}^{\,1} {(1 - x)dx} \, + \int\limits_1^{\,\dfrac{3}{2}} {(x - 1)dx} \, + \int\limits_{\dfrac{3}{2}}^{\,2} {(2 - x)dx} \cr
& = \dfrac{1}{2}\left\{ {\left[ {{{(x + 2)}^2}} \right]_{ - 2}^{ - 1.5} - \left[ {{{(x + 1)}^2}} \right]_{ - 1.5}^{ - 1} + \left[ {{{(x + 1)}^2}} \right]_{ - 1}^{ - 0.5} - \left[ {{x^2}} \right]_{ - 0.5}^0 + \left[ {{x^2}} \right]_0^{0.5} - \left[ {{{(1 - x)}^2}} \right]_{0.5}^1 + \left[ {{{(x - 1)}^2}} \right]_1^{1.5} - \left[ {{{(2 - x)}^2}} \right]_{1.5}^2} \right\} \cr
& = \dfrac{1}{2}\left\{ {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} \right\} \cr
& = \dfrac{1}{2} \times 8 \times \dfrac{1}{4} \cr
& = 1 \cr} $
Hence, the option B) is correct here.
Note:
In most of the questions on greatest integer function, we have to split into intervals. In each of the intervals, we have to define the function. This will be easy for solving these questions.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Physics Average Value and RMS Value JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Elastic Collisions in One Dimension - JEE Important Topic

JEE Advanced 2024 Syllabus Weightage
