
The value of $\int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} $ is equal to (where [ ] denotes the greatest integer function).
$\eqalign{
& A)\,\,\,\,\dfrac{1}{2} \cr
& B)\,\,\,\,1 \cr
& C)\,\,\,\,\dfrac{3}{2} \cr
& D)\,\,\,\,2 \cr} $.
Answer
216.3k+ views
Hint:
[x] denotes the greatest integer which is less than or equal to x.As an example [2.5]=2 and [-2.5]=(-3) .We have to split the whole integral w.r.t. their limits and find the integrand there for solving it easily.
Complete step by step solution:
Step1:
$$\eqalign{
& For\,\,\, - 2 < x < - 1\,\, \Rightarrow [x] = - 2 \Rightarrow x - [x] = x + 2 \cr
& Then,\,\,1 < - x < 2\, \Rightarrow [ - x] = 1 \Rightarrow - x - [ - x] = - x - 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 2, - x - 1} \right\} \cr
& = x + 2,\,\, - 2 < x \leqslant - \dfrac{3}{2} \cr
& = - x - 1,\,\, - \dfrac{3}{2} < x < - 1 \cr} $$
Step2:
$$\eqalign{
& For\,\,\, - 1 < x < 0\,\, \Rightarrow [x] = - 1 \Rightarrow x - [x] = x + 1 \cr
& Then,\,\,0 < - x < 1\, \Rightarrow [ - x] = 0 \Rightarrow - x - [ - x] = - x \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 1, - x} \right\} \cr
& = x + 1,\,\, - 1 < x \leqslant - \dfrac{1}{2} \cr
& = - x,\,\, - \dfrac{1}{2} < x < 0 \cr} $$
Step3:
$$\eqalign{
& For\,\,\,0 < x < 1\,\, \Rightarrow [x] = 0 \Rightarrow x - [x] = x \cr
& Then,\,\, - 1 < - x < 0\, \Rightarrow [ - x] = - 1 \Rightarrow - x - [ - x] = - x + 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x,1 - x} \right\} \cr
& = x,\,\,0 < x \leqslant \dfrac{1}{2} \cr
& = 1 - x,\,\,\dfrac{1}{2} < x < 1 \cr} $$
Step4:
$$\eqalign{
& For\,\,\,1 < x < 2\,\, \Rightarrow [x] = 1 \Rightarrow x - [x] = x - 1 \cr
& Then,\,\, - 2 < - 1 < 0\, \Rightarrow [ - x] = - 2 \Rightarrow - x - [ - x] = - x + 2 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x - 1,2 - x} \right\} \cr
& = x - 1,\,\,1 < x \leqslant \dfrac{3}{2} \cr
& = 2 - x,\,\,\dfrac{3}{2} < x < 2 \cr} $$
Step5:Using the above value of the integrand in different range and the property of definite integral,
$\eqalign{
& \int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} \cr
& = \int\limits_{ - 2}^{\,\dfrac{{ - 3}}{2}} {(x + 2)dx} \, + \,\int\limits_{\,\dfrac{{ - 3}}{2}}^{\, - 1} {( - x - 1)dx} \, + \int\limits_{ - 1}^{\,\dfrac{{ - 1}}{2}} {(x + 1)dx} \, + \int\limits_{\dfrac{{ - 1}}{2}}^{\,0} {( - x)dx} \, + \int\limits_0^{\,\dfrac{1}{2}} {xdx} \, + \int\limits_{\dfrac{1}{2}}^{\,1} {(1 - x)dx} \, + \int\limits_1^{\,\dfrac{3}{2}} {(x - 1)dx} \, + \int\limits_{\dfrac{3}{2}}^{\,2} {(2 - x)dx} \cr
& = \dfrac{1}{2}\left\{ {\left[ {{{(x + 2)}^2}} \right]_{ - 2}^{ - 1.5} - \left[ {{{(x + 1)}^2}} \right]_{ - 1.5}^{ - 1} + \left[ {{{(x + 1)}^2}} \right]_{ - 1}^{ - 0.5} - \left[ {{x^2}} \right]_{ - 0.5}^0 + \left[ {{x^2}} \right]_0^{0.5} - \left[ {{{(1 - x)}^2}} \right]_{0.5}^1 + \left[ {{{(x - 1)}^2}} \right]_1^{1.5} - \left[ {{{(2 - x)}^2}} \right]_{1.5}^2} \right\} \cr
& = \dfrac{1}{2}\left\{ {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} \right\} \cr
& = \dfrac{1}{2} \times 8 \times \dfrac{1}{4} \cr
& = 1 \cr} $
Hence, the option B) is correct here.
Note:
In most of the questions on greatest integer function, we have to split into intervals. In each of the intervals, we have to define the function. This will be easy for solving these questions.
[x] denotes the greatest integer which is less than or equal to x.As an example [2.5]=2 and [-2.5]=(-3) .We have to split the whole integral w.r.t. their limits and find the integrand there for solving it easily.
Complete step by step solution:
Step1:
$$\eqalign{
& For\,\,\, - 2 < x < - 1\,\, \Rightarrow [x] = - 2 \Rightarrow x - [x] = x + 2 \cr
& Then,\,\,1 < - x < 2\, \Rightarrow [ - x] = 1 \Rightarrow - x - [ - x] = - x - 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 2, - x - 1} \right\} \cr
& = x + 2,\,\, - 2 < x \leqslant - \dfrac{3}{2} \cr
& = - x - 1,\,\, - \dfrac{3}{2} < x < - 1 \cr} $$
Step2:
$$\eqalign{
& For\,\,\, - 1 < x < 0\,\, \Rightarrow [x] = - 1 \Rightarrow x - [x] = x + 1 \cr
& Then,\,\,0 < - x < 1\, \Rightarrow [ - x] = 0 \Rightarrow - x - [ - x] = - x \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x + 1, - x} \right\} \cr
& = x + 1,\,\, - 1 < x \leqslant - \dfrac{1}{2} \cr
& = - x,\,\, - \dfrac{1}{2} < x < 0 \cr} $$
Step3:
$$\eqalign{
& For\,\,\,0 < x < 1\,\, \Rightarrow [x] = 0 \Rightarrow x - [x] = x \cr
& Then,\,\, - 1 < - x < 0\, \Rightarrow [ - x] = - 1 \Rightarrow - x - [ - x] = - x + 1 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x,1 - x} \right\} \cr
& = x,\,\,0 < x \leqslant \dfrac{1}{2} \cr
& = 1 - x,\,\,\dfrac{1}{2} < x < 1 \cr} $$
Step4:
$$\eqalign{
& For\,\,\,1 < x < 2\,\, \Rightarrow [x] = 1 \Rightarrow x - [x] = x - 1 \cr
& Then,\,\, - 2 < - 1 < 0\, \Rightarrow [ - x] = - 2 \Rightarrow - x - [ - x] = - x + 2 \cr
& \min \left\{ {x - [x], - x - [ - x]} \right\} \cr
& = \min \left\{ {x - 1,2 - x} \right\} \cr
& = x - 1,\,\,1 < x \leqslant \dfrac{3}{2} \cr
& = 2 - x,\,\,\dfrac{3}{2} < x < 2 \cr} $$
Step5:Using the above value of the integrand in different range and the property of definite integral,
$\eqalign{
& \int\limits_{ - 2}^2 {\min \left\{ {x - [x], - x - [ - x]} \right\}dx} \cr
& = \int\limits_{ - 2}^{\,\dfrac{{ - 3}}{2}} {(x + 2)dx} \, + \,\int\limits_{\,\dfrac{{ - 3}}{2}}^{\, - 1} {( - x - 1)dx} \, + \int\limits_{ - 1}^{\,\dfrac{{ - 1}}{2}} {(x + 1)dx} \, + \int\limits_{\dfrac{{ - 1}}{2}}^{\,0} {( - x)dx} \, + \int\limits_0^{\,\dfrac{1}{2}} {xdx} \, + \int\limits_{\dfrac{1}{2}}^{\,1} {(1 - x)dx} \, + \int\limits_1^{\,\dfrac{3}{2}} {(x - 1)dx} \, + \int\limits_{\dfrac{3}{2}}^{\,2} {(2 - x)dx} \cr
& = \dfrac{1}{2}\left\{ {\left[ {{{(x + 2)}^2}} \right]_{ - 2}^{ - 1.5} - \left[ {{{(x + 1)}^2}} \right]_{ - 1.5}^{ - 1} + \left[ {{{(x + 1)}^2}} \right]_{ - 1}^{ - 0.5} - \left[ {{x^2}} \right]_{ - 0.5}^0 + \left[ {{x^2}} \right]_0^{0.5} - \left[ {{{(1 - x)}^2}} \right]_{0.5}^1 + \left[ {{{(x - 1)}^2}} \right]_1^{1.5} - \left[ {{{(2 - x)}^2}} \right]_{1.5}^2} \right\} \cr
& = \dfrac{1}{2}\left\{ {\dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4} + \dfrac{1}{4}} \right\} \cr
& = \dfrac{1}{2} \times 8 \times \dfrac{1}{4} \cr
& = 1 \cr} $
Hence, the option B) is correct here.
Note:
In most of the questions on greatest integer function, we have to split into intervals. In each of the intervals, we have to define the function. This will be easy for solving these questions.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

