
The value of $g$ on the moon is ${\dfrac{1}{6}^{th}}$ of the value of $g$ on earth. A man can jump $1.5m$ high on the earth. He can jump on the moon up to a height of:
A. $9m$
B. $7.5m$
C. $6m$
D. $4.5m$
Answer
218.1k+ views
Hint Velocity of man on the highest point is zero and we know the height at which man can jump on earth hence we can calculate the initial velocity at which a man jumps on earth. Now the initial velocity of the man remains the same on the moon. Hence using the equation of motion, we can calculate the height to which man can jump on the moon.
Complete Step by step solution
For earth:
Given,
$\Rightarrow$ $a = - g$ (for upward motion)
$\Rightarrow$ $v = 0$ (at highest point)
$\Rightarrow$ $h = 15m$
Now from third equation of motion, we get
${v^2} = {u^2} + 2as$
On putting values, we get
$
0 = {u^2} - 2g(1.5) \\
0 = {u^2} - 3 \times 10 \\
{u^2} = 30 \\
u = \sqrt {30} ......(1) \\
$
For moon:
Given,
$\Rightarrow$ $a = \dfrac{{ - g}}{6}$
$\Rightarrow$ $v = 0$
and, from (1) we get $u = \sqrt {30} m{s^{ - 1}}$
hence using the equation ${v^2} = {u^2} + 2as$ , we get
$
0 = 30 - 2 \times \dfrac{g}{6} \times H \\
H = \dfrac{{180}}{{2g}} \\
H = 9m \\
$
Hence, man can jump to a height of 9m on moon.
Option (A) is correct.
Note We had considered the motion of man as a straight-line motion. Since the equation we had used above is valid only in case of straight-line motion and for constant acceleration. This straight-line motion is also called Linear motion or rectilinear motion.
Complete Step by step solution
For earth:
Given,
$\Rightarrow$ $a = - g$ (for upward motion)
$\Rightarrow$ $v = 0$ (at highest point)
$\Rightarrow$ $h = 15m$
Now from third equation of motion, we get
${v^2} = {u^2} + 2as$
On putting values, we get
$
0 = {u^2} - 2g(1.5) \\
0 = {u^2} - 3 \times 10 \\
{u^2} = 30 \\
u = \sqrt {30} ......(1) \\
$
For moon:
Given,
$\Rightarrow$ $a = \dfrac{{ - g}}{6}$
$\Rightarrow$ $v = 0$
and, from (1) we get $u = \sqrt {30} m{s^{ - 1}}$
hence using the equation ${v^2} = {u^2} + 2as$ , we get
$
0 = 30 - 2 \times \dfrac{g}{6} \times H \\
H = \dfrac{{180}}{{2g}} \\
H = 9m \\
$
Hence, man can jump to a height of 9m on moon.
Option (A) is correct.
Note We had considered the motion of man as a straight-line motion. Since the equation we had used above is valid only in case of straight-line motion and for constant acceleration. This straight-line motion is also called Linear motion or rectilinear motion.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Elastic Collisions in Two Dimensions

A particle moves in a straight line according to the class 11 physics JEE_MAIN

Understanding Newton’s Laws of Motion

Other Pages
Gravitation Class 11 Physics Chapter 7 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 13 Oscillations - 2025-26

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory - 2025-26

Inertial and Non-Inertial Frame of Reference Explained

