
The value of $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$
A. Is equal to zero
B. Lies between $0$ and $3$
C. Is a negative number
D. Lies between $3$ and $6$
Answer
161.1k+ views
Hint: In the given problem, we need to find the value of $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$. At first, we will multiply and divide the above written expression by $2\sin \left( {\dfrac{\pi }{7}} \right)$. After this, we will apply the trigonometric formula $2\sin x\cos y = \sin \left( {x + y} \right) + \sin \left( {x - y} \right)$ and simplify it further to get our required answer.
Formula Used:
$2\sin x\cos y = \sin \left( {x + y} \right) + \sin \left( {x - y} \right)$
Complete step by step solution:
We have, $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$
We will multiply and divide the above written expression by $2\sin \left( {\dfrac{\pi }{7}} \right)$
$\dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{2\pi }}{7}} \right) + 2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{4\pi }}{7}} \right) + 2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{6\pi }}{7}} \right)} \right]$
We know that $2\sin x\cos y = \sin \left( {x + y} \right) + \sin \left( {x - y} \right)$. Therefore, we get
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{\pi }{7} + \dfrac{{2\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{2\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} + \dfrac{{4\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{4\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} + \dfrac{{6\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{6\pi }}{7}} \right)} \right]$
Now, take L.C.M.
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{{\pi + 2\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 2\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi + 4\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 4\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi + 6\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 6\pi }}{7}} \right)} \right]$
On simplifying the above written expression further, we get
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{{3\pi }}{7}} \right) + \sin \left( { - \dfrac{\pi }{7}} \right) + \sin \left( {\dfrac{{5\pi }}{7}} \right) + \sin \left( { - \dfrac{{3\pi }}{7}} \right) + \sin \left( {\dfrac{{7\pi }}{7}} \right) + \sin \left( { - \dfrac{{5\pi }}{7}} \right)} \right]$
As we know that $\sin \left( { - \theta } \right) = - \sin \theta $. Therefore, we get
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ {\sin \dfrac{{3\pi }}{7} - \sin \dfrac{\pi }{7} + \sin \dfrac{{5\pi }}{7} - \sin \dfrac{{3\pi }}{7} + \sin \pi - \sin \dfrac{{5\pi }}{7}} \right]$
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ { - \sin \dfrac{\pi }{7} + \sin \pi } \right]$
As we know that $\sin \pi = 0$. Therefore, we get
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ { - \sin \dfrac{\pi }{7} + 0} \right]$
$ = - \dfrac{1}{2}$
Hence, the value of $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$ is $ - \dfrac{1}{2}$, which is a negative number.
Option ‘C’ is correct
Note: To solve these types of problems, at first, observe the given expression carefully and try to make it in such a form in which you can apply trigonometric identities as here we multiplied and divided the expression by $2\sin \left( {\dfrac{\pi }{7}} \right)$. To solve these types of questions, one must remember all the standard formulas of trigonometric functions. Most of the trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas and sign convention. Students should take care of the calculations so as to be sure of their final answer.
Some trigonometric formulas are written below:
- $2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
- $2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)$
- $2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$
- $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
- $\sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$
- $\sin C - \sin D = 2\sin \dfrac{{C - D}}{2}\cos \dfrac{{C + D}}{2}$
- $\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$
- $\cos C - \cos D = - 2\sin \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}$
We use them according to the given problem.
Formula Used:
$2\sin x\cos y = \sin \left( {x + y} \right) + \sin \left( {x - y} \right)$
Complete step by step solution:
We have, $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$
We will multiply and divide the above written expression by $2\sin \left( {\dfrac{\pi }{7}} \right)$
$\dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{2\pi }}{7}} \right) + 2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{4\pi }}{7}} \right) + 2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{6\pi }}{7}} \right)} \right]$
We know that $2\sin x\cos y = \sin \left( {x + y} \right) + \sin \left( {x - y} \right)$. Therefore, we get
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{\pi }{7} + \dfrac{{2\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{2\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} + \dfrac{{4\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{4\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} + \dfrac{{6\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{6\pi }}{7}} \right)} \right]$
Now, take L.C.M.
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{{\pi + 2\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 2\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi + 4\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 4\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi + 6\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 6\pi }}{7}} \right)} \right]$
On simplifying the above written expression further, we get
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{{3\pi }}{7}} \right) + \sin \left( { - \dfrac{\pi }{7}} \right) + \sin \left( {\dfrac{{5\pi }}{7}} \right) + \sin \left( { - \dfrac{{3\pi }}{7}} \right) + \sin \left( {\dfrac{{7\pi }}{7}} \right) + \sin \left( { - \dfrac{{5\pi }}{7}} \right)} \right]$
As we know that $\sin \left( { - \theta } \right) = - \sin \theta $. Therefore, we get
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ {\sin \dfrac{{3\pi }}{7} - \sin \dfrac{\pi }{7} + \sin \dfrac{{5\pi }}{7} - \sin \dfrac{{3\pi }}{7} + \sin \pi - \sin \dfrac{{5\pi }}{7}} \right]$
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ { - \sin \dfrac{\pi }{7} + \sin \pi } \right]$
As we know that $\sin \pi = 0$. Therefore, we get
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ { - \sin \dfrac{\pi }{7} + 0} \right]$
$ = - \dfrac{1}{2}$
Hence, the value of $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$ is $ - \dfrac{1}{2}$, which is a negative number.
Option ‘C’ is correct
Note: To solve these types of problems, at first, observe the given expression carefully and try to make it in such a form in which you can apply trigonometric identities as here we multiplied and divided the expression by $2\sin \left( {\dfrac{\pi }{7}} \right)$. To solve these types of questions, one must remember all the standard formulas of trigonometric functions. Most of the trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas and sign convention. Students should take care of the calculations so as to be sure of their final answer.
Some trigonometric formulas are written below:
- $2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
- $2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)$
- $2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$
- $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
- $\sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$
- $\sin C - \sin D = 2\sin \dfrac{{C - D}}{2}\cos \dfrac{{C + D}}{2}$
- $\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$
- $\cos C - \cos D = - 2\sin \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}$
We use them according to the given problem.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
