
The value of $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$
A. Is equal to zero
B. Lies between $0$ and $3$
C. Is a negative number
D. Lies between $3$ and $6$
Answer
214.8k+ views
Hint: In the given problem, we need to find the value of $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$. At first, we will multiply and divide the above written expression by $2\sin \left( {\dfrac{\pi }{7}} \right)$. After this, we will apply the trigonometric formula $2\sin x\cos y = \sin \left( {x + y} \right) + \sin \left( {x - y} \right)$ and simplify it further to get our required answer.
Formula Used:
$2\sin x\cos y = \sin \left( {x + y} \right) + \sin \left( {x - y} \right)$
Complete step by step solution:
We have, $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$
We will multiply and divide the above written expression by $2\sin \left( {\dfrac{\pi }{7}} \right)$
$\dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{2\pi }}{7}} \right) + 2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{4\pi }}{7}} \right) + 2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{6\pi }}{7}} \right)} \right]$
We know that $2\sin x\cos y = \sin \left( {x + y} \right) + \sin \left( {x - y} \right)$. Therefore, we get
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{\pi }{7} + \dfrac{{2\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{2\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} + \dfrac{{4\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{4\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} + \dfrac{{6\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{6\pi }}{7}} \right)} \right]$
Now, take L.C.M.
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{{\pi + 2\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 2\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi + 4\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 4\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi + 6\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 6\pi }}{7}} \right)} \right]$
On simplifying the above written expression further, we get
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{{3\pi }}{7}} \right) + \sin \left( { - \dfrac{\pi }{7}} \right) + \sin \left( {\dfrac{{5\pi }}{7}} \right) + \sin \left( { - \dfrac{{3\pi }}{7}} \right) + \sin \left( {\dfrac{{7\pi }}{7}} \right) + \sin \left( { - \dfrac{{5\pi }}{7}} \right)} \right]$
As we know that $\sin \left( { - \theta } \right) = - \sin \theta $. Therefore, we get
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ {\sin \dfrac{{3\pi }}{7} - \sin \dfrac{\pi }{7} + \sin \dfrac{{5\pi }}{7} - \sin \dfrac{{3\pi }}{7} + \sin \pi - \sin \dfrac{{5\pi }}{7}} \right]$
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ { - \sin \dfrac{\pi }{7} + \sin \pi } \right]$
As we know that $\sin \pi = 0$. Therefore, we get
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ { - \sin \dfrac{\pi }{7} + 0} \right]$
$ = - \dfrac{1}{2}$
Hence, the value of $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$ is $ - \dfrac{1}{2}$, which is a negative number.
Option ‘C’ is correct
Note: To solve these types of problems, at first, observe the given expression carefully and try to make it in such a form in which you can apply trigonometric identities as here we multiplied and divided the expression by $2\sin \left( {\dfrac{\pi }{7}} \right)$. To solve these types of questions, one must remember all the standard formulas of trigonometric functions. Most of the trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas and sign convention. Students should take care of the calculations so as to be sure of their final answer.
Some trigonometric formulas are written below:
- $2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
- $2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)$
- $2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$
- $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
- $\sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$
- $\sin C - \sin D = 2\sin \dfrac{{C - D}}{2}\cos \dfrac{{C + D}}{2}$
- $\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$
- $\cos C - \cos D = - 2\sin \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}$
We use them according to the given problem.
Formula Used:
$2\sin x\cos y = \sin \left( {x + y} \right) + \sin \left( {x - y} \right)$
Complete step by step solution:
We have, $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$
We will multiply and divide the above written expression by $2\sin \left( {\dfrac{\pi }{7}} \right)$
$\dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{2\pi }}{7}} \right) + 2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{4\pi }}{7}} \right) + 2\sin \left( {\dfrac{\pi }{7}} \right)\cos \left( {\dfrac{{6\pi }}{7}} \right)} \right]$
We know that $2\sin x\cos y = \sin \left( {x + y} \right) + \sin \left( {x - y} \right)$. Therefore, we get
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{\pi }{7} + \dfrac{{2\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{2\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} + \dfrac{{4\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{4\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} + \dfrac{{6\pi }}{7}} \right) + \sin \left( {\dfrac{\pi }{7} - \dfrac{{6\pi }}{7}} \right)} \right]$
Now, take L.C.M.
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{{\pi + 2\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 2\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi + 4\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 4\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi + 6\pi }}{7}} \right) + \sin \left( {\dfrac{{\pi - 6\pi }}{7}} \right)} \right]$
On simplifying the above written expression further, we get
$ = \dfrac{1}{{2\sin \left( {\dfrac{\pi }{7}} \right)}}\left[ {\sin \left( {\dfrac{{3\pi }}{7}} \right) + \sin \left( { - \dfrac{\pi }{7}} \right) + \sin \left( {\dfrac{{5\pi }}{7}} \right) + \sin \left( { - \dfrac{{3\pi }}{7}} \right) + \sin \left( {\dfrac{{7\pi }}{7}} \right) + \sin \left( { - \dfrac{{5\pi }}{7}} \right)} \right]$
As we know that $\sin \left( { - \theta } \right) = - \sin \theta $. Therefore, we get
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ {\sin \dfrac{{3\pi }}{7} - \sin \dfrac{\pi }{7} + \sin \dfrac{{5\pi }}{7} - \sin \dfrac{{3\pi }}{7} + \sin \pi - \sin \dfrac{{5\pi }}{7}} \right]$
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ { - \sin \dfrac{\pi }{7} + \sin \pi } \right]$
As we know that $\sin \pi = 0$. Therefore, we get
$ = \dfrac{1}{{2\sin \dfrac{\pi }{7}}}\left[ { - \sin \dfrac{\pi }{7} + 0} \right]$
$ = - \dfrac{1}{2}$
Hence, the value of $\cos \left( {\dfrac{{2\pi }}{7}} \right) + \cos \left( {\dfrac{{4\pi }}{7}} \right) + \cos \left( {\dfrac{{6\pi }}{7}} \right)$ is $ - \dfrac{1}{2}$, which is a negative number.
Option ‘C’ is correct
Note: To solve these types of problems, at first, observe the given expression carefully and try to make it in such a form in which you can apply trigonometric identities as here we multiplied and divided the expression by $2\sin \left( {\dfrac{\pi }{7}} \right)$. To solve these types of questions, one must remember all the standard formulas of trigonometric functions. Most of the trigonometric functions questions are just based on substitutions, we can only solve the problem if we know the formulas and sign convention. Students should take care of the calculations so as to be sure of their final answer.
Some trigonometric formulas are written below:
- $2\sin A\cos B = \sin \left( {A + B} \right) + \sin \left( {A - B} \right)$
- $2\cos A\sin B = \sin \left( {A + B} \right) - \sin \left( {A - B} \right)$
- $2\cos A\cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)$
- $2\sin A\sin B = \cos \left( {A - B} \right) - \cos \left( {A + B} \right)$
- $\sin C + \sin D = 2\sin \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$
- $\sin C - \sin D = 2\sin \dfrac{{C - D}}{2}\cos \dfrac{{C + D}}{2}$
- $\cos C + \cos D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}$
- $\cos C - \cos D = - 2\sin \dfrac{{C + D}}{2}\sin \dfrac{{C - D}}{2}$
We use them according to the given problem.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

