
The total number of numbers of not more than 20 digits that are formed by using the digits 0,1,2,3 and 4 is
$
{\text{A}}{\text{. }}{{\text{5}}^{20}} \\
{\text{B}}{\text{. }}{{\text{5}}^{20}} - 1 \\
{\text{C}}{\text{. }}{{\text{5}}^{20}} + 1 \\
{\text{D}}{\text{. None of these}} \\
$
Answer
233.1k+ views
Hint: Not more than twenty digit numbers can be formed from 5 different digits by filling each 20 places by 5 different digits one by one.
Complete step-by-step answer:
Given the digits 0,1,2,3 and 4 to form a number. The condition of forming the number is that it shouldn't have more than 20 digits. We need the numbers of such numbers that are satisfying the given condition.
Let’s take an imaginary number with 20 digit’s places . We have 5 numbers to fill each of the 20 digit’s places i.e. one’s places can be filled by any of the digits 0,1,2,3 or 4. Similarly , all other digit’s places will have 5 digits available to choose.
So, for each digit’s place we have 5 cases possible . If we have to make not more than two digit numbers and each digit places can have 5 cases possible i.e. can be filled by 5 different numbers. Then total numbers possible would be 5(5). Similarly, for not more than 20 digit’s places we will have
$5 \times 5 \times 5 \times ...20{\text{ times}}$. So , the total number of numbers possible is ${5^{20}}$.
Answer is option (A).
Note: In these types of questions, the key concept is to assume a number of maximum digits. As zero is given as an option to fill the digit’s places, the smaller digit number will be covered easily , by taking all the cases.
Complete step-by-step answer:
Given the digits 0,1,2,3 and 4 to form a number. The condition of forming the number is that it shouldn't have more than 20 digits. We need the numbers of such numbers that are satisfying the given condition.
Let’s take an imaginary number with 20 digit’s places . We have 5 numbers to fill each of the 20 digit’s places i.e. one’s places can be filled by any of the digits 0,1,2,3 or 4. Similarly , all other digit’s places will have 5 digits available to choose.
So, for each digit’s place we have 5 cases possible . If we have to make not more than two digit numbers and each digit places can have 5 cases possible i.e. can be filled by 5 different numbers. Then total numbers possible would be 5(5). Similarly, for not more than 20 digit’s places we will have
$5 \times 5 \times 5 \times ...20{\text{ times}}$. So , the total number of numbers possible is ${5^{20}}$.
Answer is option (A).
Note: In these types of questions, the key concept is to assume a number of maximum digits. As zero is given as an option to fill the digit’s places, the smaller digit number will be covered easily , by taking all the cases.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

