
The total number of contributing structures showing hyperconjugation (involving $C - H$ bonds) for the following carbocation is:

(A) 4
(B) 5
(C) 6
(D) 7
Answer
153.6k+ views
Hint: For this problem, we have to count the total number of alpha hydrogens that are attached to the alpha carbons because the number of hyperconjugation structures is directly proportional to the number of alpha hydrogen present in the structure.
Complete step by step solution:
- In the given question, we have to explain the total number of contributing structures which will show hyperconjugation.
- Now, firstly we should know about the hyperconjugation as it is a process in which the delocalisation of the electron will take place.
- The delocalisation of the electron takes place between the sigma or single bond and pi bond or non-bonding lone pair.
- So, to calculate the total number of conjugating structures, the compound must have the alpha hydrogen.
- Now, alpha hydrogen is the hydrogen which is directly attached to the alpha carbon and alpha carbon is the carbon which is directly attached to the functional group or carbocation.
- Also, we know that the total number of hyperconjugation structures is directly proportional to the total number of alpha hydrogen atoms present in the structure.
- So, in the given compound as we can see that there is three alpha carbon that is attached to the carbocation directly.
- And out of the left alpha carbon has three alpha hydrogen, right alpha carbon has two alpha hydrogen and the alpha carbon that is present below the carbocation has one alpha carbocation.
- So, the total number of alpha-hydrogen will be $3 + 2 + 1 = 5$.
Therefore, option (B) is the correct answer.
Note: Hyperconjugation is different from that of the resonance because in hyperconjugation the delocalisation of the sigma and non-bonding electron takes place whereas in resonance the delocalisation of the pi electrons takes place only.
Complete step by step solution:
- In the given question, we have to explain the total number of contributing structures which will show hyperconjugation.
- Now, firstly we should know about the hyperconjugation as it is a process in which the delocalisation of the electron will take place.
- The delocalisation of the electron takes place between the sigma or single bond and pi bond or non-bonding lone pair.
- So, to calculate the total number of conjugating structures, the compound must have the alpha hydrogen.
- Now, alpha hydrogen is the hydrogen which is directly attached to the alpha carbon and alpha carbon is the carbon which is directly attached to the functional group or carbocation.
- Also, we know that the total number of hyperconjugation structures is directly proportional to the total number of alpha hydrogen atoms present in the structure.
- So, in the given compound as we can see that there is three alpha carbon that is attached to the carbocation directly.
- And out of the left alpha carbon has three alpha hydrogen, right alpha carbon has two alpha hydrogen and the alpha carbon that is present below the carbocation has one alpha carbocation.
- So, the total number of alpha-hydrogen will be $3 + 2 + 1 = 5$.
Therefore, option (B) is the correct answer.
Note: Hyperconjugation is different from that of the resonance because in hyperconjugation the delocalisation of the sigma and non-bonding electron takes place whereas in resonance the delocalisation of the pi electrons takes place only.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
