
The total energy of a particle executing Simple harmonic motion S.H.M. is proportional to the following:
(A) Displacement from equilibrium position of particle
(B) Frequency of oscillation
(C) Velocity in equilibrium position
(D) Square of amplitude of motion
Answer
190.5k+ views
Hint:
First start with finding the relation of the total energy of a particle executing simple harmonic motion (S.H.M.) and try to find out which of the given options is fit in that relation and finally get the right answer and you can use the method of elimination and can eliminate the wrong option one by one.
Formula used :
$T.E. = \dfrac{1}{2}m{\omega ^2}{a^2}$
Complete step by step solution:
The total energy of a particle executing in a simple harmonic motion is the sum of the potential energy and kinetic energy of the particle in the simple harmonic motion (S.H.M.).
Let the total energy be T.E. = K.E. + P.E.
Kinetic energy be $K.E. = \dfrac{1}{2}K\left( {{a^2} - {x^2}} \right)$
Potential energy be $P.E. = \dfrac{1}{2}K{x^2}$
So, $T.E. = \dfrac{1}{2}K\left( {{a^2} - {x^2}} \right) + \dfrac{1}{2}K{x^2}$
By solving;
$T.E. = \dfrac{1}{2}K{a^2}$
Where, $K = m{\omega ^2}$
Therefore, $T.E. = \dfrac{1}{2}m{\omega ^2}{a^2}$
So,
$T.E. \propto {a^2}$
Total energy is directly proportional to amplitude of motion.
Hence the correct answer is Option(D).
Note:
Find the total energy in case of a particle moving in a simple harmonic motion which is equal to the sum of kinetic energy and potential energy of the particle. Put all the values in the formula of the kinetic and potential energy carefully and get the required answer.
First start with finding the relation of the total energy of a particle executing simple harmonic motion (S.H.M.) and try to find out which of the given options is fit in that relation and finally get the right answer and you can use the method of elimination and can eliminate the wrong option one by one.
Formula used :
$T.E. = \dfrac{1}{2}m{\omega ^2}{a^2}$
Complete step by step solution:
The total energy of a particle executing in a simple harmonic motion is the sum of the potential energy and kinetic energy of the particle in the simple harmonic motion (S.H.M.).
Let the total energy be T.E. = K.E. + P.E.
Kinetic energy be $K.E. = \dfrac{1}{2}K\left( {{a^2} - {x^2}} \right)$
Potential energy be $P.E. = \dfrac{1}{2}K{x^2}$
So, $T.E. = \dfrac{1}{2}K\left( {{a^2} - {x^2}} \right) + \dfrac{1}{2}K{x^2}$
By solving;
$T.E. = \dfrac{1}{2}K{a^2}$
Where, $K = m{\omega ^2}$
Therefore, $T.E. = \dfrac{1}{2}m{\omega ^2}{a^2}$
So,
$T.E. \propto {a^2}$
Total energy is directly proportional to amplitude of motion.
Hence the correct answer is Option(D).
Note:
Find the total energy in case of a particle moving in a simple harmonic motion which is equal to the sum of kinetic energy and potential energy of the particle. Put all the values in the formula of the kinetic and potential energy carefully and get the required answer.
Recently Updated Pages
Mass vs Weight: Key Differences, Units & Examples Explained

Uniform Acceleration: Definition, Equations & Graphs for JEE/NEET

Difference Between Force and Pressure: Definitions, Formulas & Examples

Difference Between Cell and Battery – Key Differences, Diagram, and Examples

Multiplication Theorem of Probability

JEE Main Last 5 Years Question Papers With Solutions| Free PDF Download

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Equation of Trajectory in Projectile Motion: Derivation & Proof

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Collision: Meaning, Types & Examples in Physics

Other Pages
NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 3 Motion In A Plane - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Physics Chapter 5 Work Energy And Power - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26
