
The threshold wavelength for the photoelectric effect of a metal is \[6500\mathop A\limits^ \circ \]. The work function of the metal is approximately
A. 2 eV
B. 1 eV
C. 0.1 eV
D. 3 eV
Answer
152.4k+ views
Hint:If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
Formula used:
\[K = \dfrac{{hc}}{\lambda } - \phi \]
where K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[\phi \] is the work function of the metal.
Complete step by step solution:
The metal's threshold wavelength is the wavelength that corresponds to the minimal energy required to overcome the attractive attraction that binds the valence electron to the shell of the metal's atom. Because photon energy is inversely related to wavelength, the wavelength should be the highest permissible wavelength for a minimal value of energy.
For minimum conditions, the electron is just knocked out of the metal, i.e. the speed of the emitted electron is zero. Hence, the kinetic energy of the emitted electron is zero.
When the kinetic energy is zero, then the corresponding energy of the photon is called the work function of the metal.
The threshold wavelength is given as 6500 angstrom.
\[{\lambda _0} = 6500\mathop A\limits^ \circ \]
\[\Rightarrow {\lambda _0} = 6.5 \times {10^{ - 7}}m\]
Then the work function is,
\[\phi = \dfrac{{hc}}{{{\lambda _0}}} \\ \]
\[\Rightarrow \phi = \dfrac{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{{\left( {6.5 \times {{10}^{ - 7}}} \right)}}J \\ \]
\[\Rightarrow \phi = 3.1 \times {10^{ - 19}}J\]
As 1 eV is equal to \[1.6 \times {10^{ - 19}}J\]. So,
\[\phi = \dfrac{{3.1 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}eV \\ \]
\[\therefore \phi = 1.9\,eV \approx 2\,eV\]
Hence, the work function of the photoelectric metal is 2 eV.
Therefore, the correct option is A.
Note: The work function is inversely proportional to the threshold wavelength. The wavelength of the incident photon should be less than the threshold wavelength for the photoelectric event to occur.
Formula used:
\[K = \dfrac{{hc}}{\lambda } - \phi \]
where K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[\phi \] is the work function of the metal.
Complete step by step solution:
The metal's threshold wavelength is the wavelength that corresponds to the minimal energy required to overcome the attractive attraction that binds the valence electron to the shell of the metal's atom. Because photon energy is inversely related to wavelength, the wavelength should be the highest permissible wavelength for a minimal value of energy.
For minimum conditions, the electron is just knocked out of the metal, i.e. the speed of the emitted electron is zero. Hence, the kinetic energy of the emitted electron is zero.
When the kinetic energy is zero, then the corresponding energy of the photon is called the work function of the metal.
The threshold wavelength is given as 6500 angstrom.
\[{\lambda _0} = 6500\mathop A\limits^ \circ \]
\[\Rightarrow {\lambda _0} = 6.5 \times {10^{ - 7}}m\]
Then the work function is,
\[\phi = \dfrac{{hc}}{{{\lambda _0}}} \\ \]
\[\Rightarrow \phi = \dfrac{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{{\left( {6.5 \times {{10}^{ - 7}}} \right)}}J \\ \]
\[\Rightarrow \phi = 3.1 \times {10^{ - 19}}J\]
As 1 eV is equal to \[1.6 \times {10^{ - 19}}J\]. So,
\[\phi = \dfrac{{3.1 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}eV \\ \]
\[\therefore \phi = 1.9\,eV \approx 2\,eV\]
Hence, the work function of the photoelectric metal is 2 eV.
Therefore, the correct option is A.
Note: The work function is inversely proportional to the threshold wavelength. The wavelength of the incident photon should be less than the threshold wavelength for the photoelectric event to occur.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

The perfect formula used for calculating induced emf class 12 physics JEE_Main

Collision - Important Concepts and Tips for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Charging and Discharging of Capacitor

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Brief Information on Alpha, Beta and Gamma Decay - JEE Important Topic

Compressibility Factor Z | Plot of Compressibility Factor Z Vs Pressure for JEE
