
The threshold wavelength for the photoelectric effect of a metal is \[6500\mathop A\limits^ \circ \]. The work function of the metal is approximately
A. 2 eV
B. 1 eV
C. 0.1 eV
D. 3 eV
Answer
158.1k+ views
Hint:If the energy of the photon exceeds the minimum energy needed to eject the electron then the rest of the energy is transferred as kinetic energy of the ejected electrons.
Formula used:
\[K = \dfrac{{hc}}{\lambda } - \phi \]
where K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[\phi \] is the work function of the metal.
Complete step by step solution:
The metal's threshold wavelength is the wavelength that corresponds to the minimal energy required to overcome the attractive attraction that binds the valence electron to the shell of the metal's atom. Because photon energy is inversely related to wavelength, the wavelength should be the highest permissible wavelength for a minimal value of energy.
For minimum conditions, the electron is just knocked out of the metal, i.e. the speed of the emitted electron is zero. Hence, the kinetic energy of the emitted electron is zero.
When the kinetic energy is zero, then the corresponding energy of the photon is called the work function of the metal.
The threshold wavelength is given as 6500 angstrom.
\[{\lambda _0} = 6500\mathop A\limits^ \circ \]
\[\Rightarrow {\lambda _0} = 6.5 \times {10^{ - 7}}m\]
Then the work function is,
\[\phi = \dfrac{{hc}}{{{\lambda _0}}} \\ \]
\[\Rightarrow \phi = \dfrac{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{{\left( {6.5 \times {{10}^{ - 7}}} \right)}}J \\ \]
\[\Rightarrow \phi = 3.1 \times {10^{ - 19}}J\]
As 1 eV is equal to \[1.6 \times {10^{ - 19}}J\]. So,
\[\phi = \dfrac{{3.1 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}eV \\ \]
\[\therefore \phi = 1.9\,eV \approx 2\,eV\]
Hence, the work function of the photoelectric metal is 2 eV.
Therefore, the correct option is A.
Note: The work function is inversely proportional to the threshold wavelength. The wavelength of the incident photon should be less than the threshold wavelength for the photoelectric event to occur.
Formula used:
\[K = \dfrac{{hc}}{\lambda } - \phi \]
where K is the kinetic energy of the emitted electron, h is the planck's constant, c is the speed of light, \[\lambda \] is the wavelength of the photon and \[\phi \] is the work function of the metal.
Complete step by step solution:
The metal's threshold wavelength is the wavelength that corresponds to the minimal energy required to overcome the attractive attraction that binds the valence electron to the shell of the metal's atom. Because photon energy is inversely related to wavelength, the wavelength should be the highest permissible wavelength for a minimal value of energy.
For minimum conditions, the electron is just knocked out of the metal, i.e. the speed of the emitted electron is zero. Hence, the kinetic energy of the emitted electron is zero.
When the kinetic energy is zero, then the corresponding energy of the photon is called the work function of the metal.
The threshold wavelength is given as 6500 angstrom.
\[{\lambda _0} = 6500\mathop A\limits^ \circ \]
\[\Rightarrow {\lambda _0} = 6.5 \times {10^{ - 7}}m\]
Then the work function is,
\[\phi = \dfrac{{hc}}{{{\lambda _0}}} \\ \]
\[\Rightarrow \phi = \dfrac{{\left( {6.63 \times {{10}^{ - 34}}} \right)\left( {3 \times {{10}^8}} \right)}}{{\left( {6.5 \times {{10}^{ - 7}}} \right)}}J \\ \]
\[\Rightarrow \phi = 3.1 \times {10^{ - 19}}J\]
As 1 eV is equal to \[1.6 \times {10^{ - 19}}J\]. So,
\[\phi = \dfrac{{3.1 \times {{10}^{ - 19}}}}{{1.6 \times {{10}^{ - 19}}}}eV \\ \]
\[\therefore \phi = 1.9\,eV \approx 2\,eV\]
Hence, the work function of the photoelectric metal is 2 eV.
Therefore, the correct option is A.
Note: The work function is inversely proportional to the threshold wavelength. The wavelength of the incident photon should be less than the threshold wavelength for the photoelectric event to occur.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Wheatstone Bridge - Working Principle, Formula, Derivation, Application

Young's Double Slit Experiment Step by Step Derivation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Uniform Acceleration

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Charging and Discharging of Capacitor

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic

Degree of Dissociation and Its Formula With Solved Example for JEE
