
The third line of the Balmer series spectrum of a hydrogen-like ion of atomic number $Z$ equals to $108.5\;nm$ . The binding energy of the electron in the ground state of these ions is ${E_B}$ . Then
A. $Z = 2$
B. ${E_B} = 54.4\,eV$
C. $Z = 3$
D. ${E_B} = 122.4\,eV$
Answer
164.1k+ views
Hint:In this problem, to determine the binding energy of the electron in the ground state of hydrogen-like ions; we will apply Rydberg's formula to find the value of $Z$ and then substitute this value in the expression of Binding Energy, ${E_B} = - 13.6\dfrac{{{Z^2}}}{{{n^2}}}$ in order to calculate the correct solution.
Formula used:
The formula used in this problem is Rydberg’s formula which is defined as: -
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)$
where, $R = \;Rydberg{\text{ }}constant = 1.1 \times {10^7}\,{m^{ - 1}}$, ${n_1}{\text{ }}and{\text{ }}{n_2}$ are the numbers for low energy level and high energy level respectively.
The expression for Binding Energy is,
${E_B} = - 13.6\dfrac{{{Z^2}}}{{{n^2}}}$
Complete step by step solution:
We know that the expression for Rydberg’s formula can be stated as: -
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\,(1) \\ $
Now it is given that the third line of the Balmer series spectrum of a hydrogen-like ion equals $108.5\;nm$. Therefore, for the Balmer series spectrum for the given ion ${n_1} = 2$ and ${n_2} = 5$. Also,
$\lambda = 108.5\;\,nm = 108.5 \times {10^{ - 9}}\,m$..........$\left( {\because 1\,nm = {{10}^{ - 9}}\,m} \right)$
From the equation $(1)$, we get
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{5^2}}}} \right)\, = R{Z^2}\left( {\dfrac{1}{4} - \dfrac{1}{{25}}} \right) = R{Z^2}\left( {\dfrac{{21}}{{100}}} \right)$
${Z^2} = \dfrac{1}{{R\lambda }}\left( {\dfrac{{100}}{{21}}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\,(2) \\ $
Substituting the values of $\lambda $ and $R$ in the equation $(2)$ from the question, we get
${Z^2} = \dfrac{1}{{\left( {1.1 \times {{10}^7}} \right)\left( {108.5 \times {{10}^{ - 9}}\,} \right)}} \cdot \left( {\dfrac{{100}}{{21}}} \right) \\ $
On simplifying it, we get
${Z^2} = 3.9896 \approx 4$
$ \Rightarrow Z = 2$
which means a hydrogen-like ion used in this spectrum is nothing but the $H{e^ + }$ ion.
Now, the expression for Binding Energy can be stated as: -
${E_B} = - 13.6\dfrac{{{Z^2}}}{{{n^2}}} \\ $
For ground state, $n = 1$ and substituting $Z = 2$ , we get
${E_B} = - 13.6\dfrac{{{{\left( 2 \right)}^2}}}{{{{\left( 1 \right)}^2}}} \\ $
$\therefore {E_B} = - 13.6 \times 4 = - 54.4\,eV$
Here, Negative binding energy indicates a spectrum’s degree of stability. i.e., a spectrum is more stable if the binding energy is negative. Thus, the binding energy of the electron in the ground state of hydrogen-like ions of atomic number $Z = 2$ will be ${E_B} = 54.4\,eV$.
Hence, the correct options are A and B.
Note: In this problem, first Rydberg’s formula is used to calculate the atomic number of ions and then apply ${E_B} = - 13.6\dfrac{{{Z^2}}}{{{n^2}}}$ to determine the binding energy of the electron in the ground state. Also, the key points like ${n_1} = 2$ (for Balmer series of lines) and $n = 1$ (for ground state) must be kept in mind while doing the calculation part.
Formula used:
The formula used in this problem is Rydberg’s formula which is defined as: -
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)$
where, $R = \;Rydberg{\text{ }}constant = 1.1 \times {10^7}\,{m^{ - 1}}$, ${n_1}{\text{ }}and{\text{ }}{n_2}$ are the numbers for low energy level and high energy level respectively.
The expression for Binding Energy is,
${E_B} = - 13.6\dfrac{{{Z^2}}}{{{n^2}}}$
Complete step by step solution:
We know that the expression for Rydberg’s formula can be stated as: -
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{n_1^2}} - \dfrac{1}{{n_2^2}}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\,(1) \\ $
Now it is given that the third line of the Balmer series spectrum of a hydrogen-like ion equals $108.5\;nm$. Therefore, for the Balmer series spectrum for the given ion ${n_1} = 2$ and ${n_2} = 5$. Also,
$\lambda = 108.5\;\,nm = 108.5 \times {10^{ - 9}}\,m$..........$\left( {\because 1\,nm = {{10}^{ - 9}}\,m} \right)$
From the equation $(1)$, we get
$\dfrac{1}{\lambda } = R{Z^2}\left( {\dfrac{1}{{{2^2}}} - \dfrac{1}{{{5^2}}}} \right)\, = R{Z^2}\left( {\dfrac{1}{4} - \dfrac{1}{{25}}} \right) = R{Z^2}\left( {\dfrac{{21}}{{100}}} \right)$
${Z^2} = \dfrac{1}{{R\lambda }}\left( {\dfrac{{100}}{{21}}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\,(2) \\ $
Substituting the values of $\lambda $ and $R$ in the equation $(2)$ from the question, we get
${Z^2} = \dfrac{1}{{\left( {1.1 \times {{10}^7}} \right)\left( {108.5 \times {{10}^{ - 9}}\,} \right)}} \cdot \left( {\dfrac{{100}}{{21}}} \right) \\ $
On simplifying it, we get
${Z^2} = 3.9896 \approx 4$
$ \Rightarrow Z = 2$
which means a hydrogen-like ion used in this spectrum is nothing but the $H{e^ + }$ ion.
Now, the expression for Binding Energy can be stated as: -
${E_B} = - 13.6\dfrac{{{Z^2}}}{{{n^2}}} \\ $
For ground state, $n = 1$ and substituting $Z = 2$ , we get
${E_B} = - 13.6\dfrac{{{{\left( 2 \right)}^2}}}{{{{\left( 1 \right)}^2}}} \\ $
$\therefore {E_B} = - 13.6 \times 4 = - 54.4\,eV$
Here, Negative binding energy indicates a spectrum’s degree of stability. i.e., a spectrum is more stable if the binding energy is negative. Thus, the binding energy of the electron in the ground state of hydrogen-like ions of atomic number $Z = 2$ will be ${E_B} = 54.4\,eV$.
Hence, the correct options are A and B.
Note: In this problem, first Rydberg’s formula is used to calculate the atomic number of ions and then apply ${E_B} = - 13.6\dfrac{{{Z^2}}}{{{n^2}}}$ to determine the binding energy of the electron in the ground state. Also, the key points like ${n_1} = 2$ (for Balmer series of lines) and $n = 1$ (for ground state) must be kept in mind while doing the calculation part.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Charging and Discharging of Capacitor

Wheatstone Bridge for JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE
